RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2012, Volume 203, Number 1, Pages 3–30 (Mi msb7825)  

This article is cited in 14 scientific papers (total in 14 papers)

The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function

A. K. Gushchin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We consider a Dirichlet problem in which the boundary value of a solution is understood as the $L_p$-limit, $p>1$, of traces of this solution on surfaces ‘parallel’ to the boundary. We suggest a setting of this problem which (in contrast to the notion of solution in $W_{p,\operatorname{loc}}^1$) enables us to study the solvability of the problem without making smoothness assumptions on the coefficients inside the domain. In particular, for an equation in selfadjoint form without lower-order terms, under the same conditions as those used for $p=2$, we prove unique solvability and establish a bound for an analogue of the area integral.
Bibliography: 37 titles.

Keywords: elliptic equation, Dirichlet problem, boundary value.

Funding Agency Grant Number
Russian Foundation for Basic Research 10-01-00178-а
Ministry of Education and Science of the Russian Federation НШ-7675.2010.1


DOI: https://doi.org/10.4213/sm7825

Full text: PDF file (634 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2012, 203:1, 1–27

Bibliographic databases:

UDC: 517.956.223
MSC: 35J25
Received: 25.11.2010 and 07.04.2011

Citation: A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Mat. Sb., 203:1 (2012), 3–30; Sb. Math., 203:1 (2012), 1–27

Citation in format AMSBIB
\Bibitem{Gus12}
\by A.~K.~Gushchin
\paper The Dirichlet problem for a~second-order elliptic equation with an $L_p$ boundary function
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 1
\pages 3--30
\mathnet{http://mi.mathnet.ru/msb7825}
\crossref{https://doi.org/10.4213/sm7825}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2933090}
\zmath{https://zbmath.org/?q=an:1244.35038}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203....1G}
\elib{http://elibrary.ru/item.asp?id=19066309}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 1
\pages 1--27
\crossref{https://doi.org/10.1070/SM2012v203n01ABEH004211}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000301886900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858764762}


Linking options:
  • http://mi.mathnet.ru/eng/msb7825
  • https://doi.org/10.4213/sm7825
  • http://mi.mathnet.ru/eng/msb/v203/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gushchin A.K., “Estimates of the nontangential maximal function for solutions of a second-order elliptic equation”, Dokl. Math., 86:2 (2012), 667–669  mathnet  crossref  zmath  isi  elib  elib  scopus
    2. A. K. Guschin, “$L_p$-otsenki nekasatelnoi maksimalnoi funktsii dlya reshenii ellipticheskogo uravneniya vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 53–69  mathnet  crossref
    3. A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    5. A. K. Guschin, “O zadache Dirikhle dlya ellipticheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 19–43  mathnet  crossref  zmath  elib
    6. A. K. Gushchin, “V.A. Steklov's work on equations of mathematical physics and development of his results in this field”, Proc. Steklov Inst. Math., 289 (2015), 134–151  mathnet  crossref  crossref  isi  elib
    7. L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Dumanyan V.Zh., “On solvability of the Dirichlet problem with the boundary function in $L^2$ for a second-order elliptic equation”, J. Contemp. Math. Anal., 50:4 (2015), 153–166  crossref  mathscinet  zmath  isi  scopus
    10. A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  adsnasa  isi  elib
    12. A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  isi  elib  elib
    13. N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43  mathnet  crossref  crossref  isi  elib  elib
    14. V. I. Vlasov, “Hardy spaces, approximation issues and boundary value problems”, Eurasian Math. J., 9:3 (2018), 85–94  mathnet  crossref
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:856
    Full text:144
    References:103
    First page:51

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019