|
This article is cited in 8 scientific papers (total in 8 papers)
Approximation by simple partial fractions with constraints on the poles
P. A. Borodin M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Under various constraints on a compact subset $K$ of the complex plane $\mathbb C$ and a subset $E\subset \mathbb C$ disjoint from $K$, the problem of density in the space $AC(K)$ (the space of functions that are
continuous on a compact set $K$ and analytic in its interior) of the set of simple partial fractions (logarithmic derivatives of polynomials) with poles in $E$ is studied. The present investigation also involves examining some properties of additive subgroups of a Hilbert space.
Bibliography: 19 titles.
Keywords:
simple partial fractions, uniform approximation, restriction on the poles, additive subgroup.
DOI:
https://doi.org/10.4213/sm7910
Full text:
PDF file (573 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2012, 203:11, 1553–1570
Bibliographic databases:
UDC:
517.538.5+517.982.256
MSC: 41A20, 30E10 Received: 11.07.2011 and 17.04.2012
Citation:
P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Mat. Sb., 203:11 (2012), 23–40; Sb. Math., 203:11 (2012), 1553–1570
Citation in format AMSBIB
\Bibitem{Bor12}
\by P.~A.~Borodin
\paper Approximation by simple partial fractions with constraints on the poles
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 11
\pages 23--40
\mathnet{http://mi.mathnet.ru/msb7910}
\crossref{https://doi.org/10.4213/sm7910}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3053224}
\zmath{https://zbmath.org/?q=an:06146409}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203.1553B}
\elib{http://elibrary.ru/item.asp?id=19066356}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 11
\pages 1553--1570
\crossref{https://doi.org/10.1070/SM2012v203n11ABEH004275}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000313837500002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873806035}
Linking options:
http://mi.mathnet.ru/eng/msb7910https://doi.org/10.4213/sm7910 http://mi.mathnet.ru/eng/msb/v203/i11/p23
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
P. Chunaev, “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106
-
P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104
-
A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730
-
P. A. Borodin, O. N. Kosukhin, “Quantitative Expressions for the Connectedness of Sets in ${\mathbb R}^n$”, Math. Notes, 98:5 (2015), 707–713
-
P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341
-
A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77
-
P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094
-
V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Ekstremalnye i approksimativnye svoistva naiprosteishikh drobei”, Izv. vuzov. Matem., 2018, no. 12, 9–49
|
Number of views: |
This page: | 490 | Full text: | 101 | References: | 80 | First page: | 69 |
|