|
Khovanov homology of graph-links
I. M. Nikonov M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two).
Bibliography: 14 titles.
Keywords:
graph-links, Khovanov homology.
DOI:
https://doi.org/10.4213/sm7914
Full text:
PDF file (531 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2012, 203:8, 1196–1210
Bibliographic databases:
UDC:
515.16+519.17
MSC: 57M25, 57M27 Received: 21.07.2011 and 03.02.2012
Citation:
I. M. Nikonov, “Khovanov homology of graph-links”, Mat. Sb., 203:8 (2012), 125–140; Sb. Math., 203:8 (2012), 1196–1210
Citation in format AMSBIB
\Bibitem{Nik12}
\by I.~M.~Nikonov
\paper Khovanov homology of graph-links
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 8
\pages 125--140
\mathnet{http://mi.mathnet.ru/msb7914}
\crossref{https://doi.org/10.4213/sm7914}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3024815}
\zmath{https://zbmath.org/?q=an:1258.57004}
\elib{https://elibrary.ru/item.asp?id=19066575}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 8
\pages 1196--1210
\crossref{https://doi.org/10.1070/SM2012v203n08ABEH004260}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309818600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868627458}
Linking options:
http://mi.mathnet.ru/eng/msb7914https://doi.org/10.4213/sm7914 http://mi.mathnet.ru/eng/msb/v203/i8/p125
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 282 | Full text: | 101 | References: | 50 | First page: | 16 |
|