RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2004, Volume 195, Number 3, Pages 15–46 (Mi msb807)  

This article is cited in 13 scientific papers (total in 13 papers)

Non-degenerate fixed points and mixing in flows on a 2-torus. II

A. V. Kochergin

M. V. Lomonosov Moscow State University

Abstract: A mixing result is proved for the special flow constructed from an arbitrary irrational rotation of the circle and a strongly asymmetric function with logarithmic singularities.

DOI: https://doi.org/10.4213/sm807

Full text: PDF file (380 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2004, 195:3, 317–346

Bibliographic databases:

UDC: 517.987.5+517.938
MSC: 37E35, 37A25
Received: 17.09.2003

Citation: A. V. Kochergin, “Non-degenerate fixed points and mixing in flows on a 2-torus. II”, Mat. Sb., 195:3 (2004), 15–46; Sb. Math., 195:3 (2004), 317–346

Citation in format AMSBIB
\Bibitem{Koc04}
\by A.~V.~Kochergin
\paper Non-degenerate fixed points and mixing in~flows on a~2-torus.~II
\jour Mat. Sb.
\yr 2004
\vol 195
\issue 3
\pages 15--46
\mathnet{http://mi.mathnet.ru/msb807}
\crossref{https://doi.org/10.4213/sm807}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2068956}
\zmath{https://zbmath.org/?q=an:1077.37006}
\transl
\jour Sb. Math.
\yr 2004
\vol 195
\issue 3
\pages 317--346
\crossref{https://doi.org/10.1070/SM2004v195n03ABEH000807}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000222751400002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3242762997}


Linking options:
  • http://mi.mathnet.ru/eng/msb807
  • https://doi.org/10.4213/sm807
  • http://mi.mathnet.ru/eng/msb/v195/i3/p15

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. V. Kochergin, “Generalizations of theorems on mixing flows with non-degenerate saddle points on a 2-torus”, Sb. Math., 195:9 (2004), 1253–1270  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Kochergin A., “Well-approximable angles and mixing for flows on $\mathbb T^2$ with nonsingular fixed points”, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 113–121  crossref  mathscinet  zmath  isi
    3. B. R. Fayad, M. Lemańczy, “On the ergodicity of cylindrical transformations given by the logarithm”, Mosc. Math. J., 6:4 (2006), 657–672  mathnet  mathscinet  zmath
    4. A. V. Kochergin, “Nondegenerate Saddle Points and the Absence of Mixing in Flows on Surfaces”, Proc. Steklov Inst. Math., 256 (2007), 238–252  mathnet  crossref  mathscinet  zmath  elib  elib
    5. Ulcigrai C., “Mixing of asymmetric logarithmic suspension flows over interval exchange transformations”, Ergodic Theory Dynam. Systems, 27:3 (2007), 991–1035  crossref  mathscinet  zmath  isi  elib
    6. Ulcigrai C., “Weak Mixing for Logarithmic Flows Over Interval Exchange Transformations”, J. Mod. Dyn., 3:1 (2009), 35–49  crossref  mathscinet  zmath  isi  elib
    7. Fraczek K., Lemanczyk M., “Ratner's Property and Mild Mixing for Special Flows Over Two-Dimensional Rotations”, J Mod Dyn, 4:4 (2010), 609–635  mathscinet  zmath  isi
    8. Corinna Ulcigrai, “Absence of mixing in area-preserving flows on surfaces”, Ann. Math, 173:3 (2011), 1743  crossref  mathscinet  zmath  isi
    9. Krzysztof Frączek, Mariusz Lemańczyk, “A class of mixing special flows over two–dimensional rotations”, DCDS-A, 35:10 (2015), 4823  crossref  mathscinet  zmath
    10. Bassam Fayad, Adam Kanigowski, “Multiple mixing for a class of conservative surface flows”, Invent. math, 2015  crossref  mathscinet
    11. Ravotti D., “Quantitative Mixing For Locally Hamiltonian Flows With Saddle Loops on Compact Surfaces”, Ann. Henri Poincare, 18:12 (2017), 3815–3861  crossref  mathscinet  zmath  isi  scopus
    12. Conze J.-P., Lemanczyk M., “Centralizer and Liftable Centralizer of Special Flows Over Rotations”, Nonlinearity, 31:8 (2018), 3939–3972  crossref  mathscinet  zmath  isi  scopus
    13. Chaika J. Wright A., “A Smooth Mixing Flow on a Surface With Nondegenerate Fixed Points”, J. Am. Math. Soc., 32:1 (2019), 81–117  crossref  mathscinet  zmath  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:242
    Full text:70
    References:61
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019