RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2013, Volume 204, Number 4, Pages 127–160 (Mi msb8114)  

This article is cited in 4 scientific papers (total in 4 papers)

Topology of actions and homogeneous spaces

K. L. Kozlov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Topologization of a group of homeomorphisms and its action provide additional possibilities for studying the topological space, the group of homeomorphisms, and their interconnections. The subject of the paper is the use of the property of $d$-openness of an action (introduced by Ancel under the name of weak micro-transitivity) in the study of spaces with various forms of homogeneity. It is proved that a $d$-open action of a Čech-complete group is open. A characterization of Polish SLH spaces using $d$-openness is given, and it is established that any separable metrizable SLH space has an SLH completion that is a Polish space. Furthermore, the completion is realized in coordination with the completion of the acting group with respect to the two-sided uniformity. A sufficient condition is given for extension of a $d$-open action to the completion of the space with respect to the maximal equiuniformity with preservation of $d$-openness. A result of van Mill is generalized, namely, it is proved that any homogeneous CDH metrizable compactum is the only $G$-compactification of the space of rational numbers for the action of some Polish group.
Bibliography: 39 titles.

Keywords: $G$-space, $G$-extension, coset space, strong local homogeneity, countable dense homogeneity.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation РНП 2.1.1.3704


DOI: https://doi.org/10.4213/sm8114

Full text: PDF file (769 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2013, 204:4, 588–620

Bibliographic databases:

UDC: 515.122.4+512.546
MSC: Primary 54H15; Secondary 22A05, 54D35, 54E35
Received: 15.02.2012

Citation: K. L. Kozlov, “Topology of actions and homogeneous spaces”, Mat. Sb., 204:4 (2013), 127–160; Sb. Math., 204:4 (2013), 588–620

Citation in format AMSBIB
\Bibitem{Koz13}
\by K.~L.~Kozlov
\paper Topology of actions and homogeneous spaces
\jour Mat. Sb.
\yr 2013
\vol 204
\issue 4
\pages 127--160
\mathnet{http://mi.mathnet.ru/msb8114}
\crossref{https://doi.org/10.4213/sm8114}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3097582}
\zmath{https://zbmath.org/?q=an:06190646}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..588K}
\elib{http://elibrary.ru/item.asp?id=19066672}
\transl
\jour Sb. Math.
\yr 2013
\vol 204
\issue 4
\pages 588--620
\crossref{https://doi.org/10.1070/SM2013v204n04ABEH004313}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000320302700006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888388241}


Linking options:
  • http://mi.mathnet.ru/eng/msb8114
  • https://doi.org/10.4213/sm8114
  • http://mi.mathnet.ru/eng/msb/v204/i4/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. L. Kozlov, “Spectral decompositions of spaces induced by spectral decompositions of acting groups”, Topology Appl., 160:11 (2013), 1188–1205  crossref  mathscinet  zmath  isi  elib  scopus
    2. V. G. Pestov, “A topological transformation group without non-trivial equivariant compactifications”, Adv. Math., 311 (2017), 1–17  crossref  mathscinet  zmath  isi  scopus
    3. K. L. Kozlov, “$\mathbb R$-factorizable $G$-spaces”, Topology Appl., 227 (2017), 146–164  crossref  mathscinet  zmath  isi  scopus
    4. Whittington K., “The Sin Property in Homeomorphism Groups”, Topology Appl., 251 (2019), 94–106  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:387
    Full text:80
    References:53
    First page:42

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019