RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2004, Volume 195, Number 4, Pages 23–64 (Mi msb813)  

This article is cited in 11 scientific papers (total in 11 papers)

Group classification of the eikonal equation for a 3-dimensional inhomogeneous medium

A. V. Borovskikh

Voronezh State University

Abstract: The equation $(\nabla\psi)^2=1/v^2(x,y,z)$, known as the eikonal equation, is studied. This is the characteristic equation for the wave equations in an inhomogeneous medium, which plays a central role in the description of the geometry of the rays and the wave fronts. A full geometric classification of the family of eikonal equations is carried out (an equation is determined by the function $v(x,y,z)$, which has the meaning of the propagation velocity of a perturbation in the medium). In the cases of equations with linear or quadratic velocity function $v(x,y,z)$, explicit solutions – point source eikonals – are presented and the geometry of the rays is completely described.

DOI: https://doi.org/10.4213/sm813

Full text: PDF file (471 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2004, 195:4, 479–520

Bibliographic databases:

UDC: 517.958
MSC: Primary 35F20, 35Q60, 35A30, 58J70; Secondary 78A05, 74Jxx
Received: 06.11.2002

Citation: A. V. Borovskikh, “Group classification of the eikonal equation for a 3-dimensional inhomogeneous medium”, Mat. Sb., 195:4 (2004), 23–64; Sb. Math., 195:4 (2004), 479–520

Citation in format AMSBIB
\Bibitem{Bor04}
\by A.~V.~Borovskikh
\paper Group classification of the eikonal equation for
a~3-di\-men\-sional inhomogeneous medium
\jour Mat. Sb.
\yr 2004
\vol 195
\issue 4
\pages 23--64
\mathnet{http://mi.mathnet.ru/msb813}
\crossref{https://doi.org/10.4213/sm813}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2086664}
\zmath{https://zbmath.org/?q=an:1073.35056}
\transl
\jour Sb. Math.
\yr 2004
\vol 195
\issue 4
\pages 479--520
\crossref{https://doi.org/10.1070/SM2004v195n04ABEH000813}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000222751400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3242748234}


Linking options:
  • http://mi.mathnet.ru/eng/msb813
  • https://doi.org/10.4213/sm813
  • http://mi.mathnet.ru/eng/msb/v195/i4/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Borovskikh A.V., “The moving source phantom in geometric optics of inhomogeneous media”, Differ. Equ., 40:7 (2004), 927–933  mathnet  crossref  mathscinet  zmath  isi  elib
    2. Arrigo D.J., “Nonclassical contact symmetries and Charpit's method of compatibility”, J. Nonlinear Math. Phys., 12:3 (2005), 321–329  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. A. V. Borovskikh, “The two-dimensional eikonal equation”, Siberian Math. J., 47:5 (2006), 813–834  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    4. A. V. Borovskikh, “Gruppy ekvivalentnosti uravnenii eikonala i klassy ekvivalentnykh uravnenii”, Vestn. NGU. Ser. matem., mekh., inform., 6:4 (2006), 3–42  mathnet
    5. Vaneeva O.O., Johnpillai A.G., Popovych R.O., Sophocleous C., “Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities”, J. Math. Anal. Appl., 330:2 (2007), 1363–1386  crossref  mathscinet  zmath  isi  elib
    6. Popovych R.O., Kunzinger M., Eshraghi H, “Admissible Transformations and Normalized Classes of Nonlinear Schrodinger Equations”, Acta Applicandae Mathematicae, 109:2 (2010), 315–359  crossref  mathscinet  zmath  isi  elib
    7. Alexander Bihlo, Elsa Dos Santos Cardoso-Bihlo, Roman O. Popovych, “Complete group classification of a class of nonlinear wave equations”, J. Math. Phys, 53:12 (2012), 123515  crossref  mathscinet  zmath  isi
    8. Vaneeva O.O., Popovych R.O., Sophocleous C., “Extended Group Analysis of Variable Coefficient Reaction-Diffusion Equations with Exponential Nonlinearities”, J. Math. Anal. Appl., 396:1 (2012), 225–242  crossref  mathscinet  zmath  isi
    9. A. V. Borovskikh, “Eikonal equation for anisotropic media”, J. Math. Sci. (N. Y.), 197:2 (2014), 248–289  mathnet  crossref  elib
    10. Fedorchuk V., Fedorchuk V., “On Classification of Symmetry Reductions for the Eikonal Equation”, Symmetry-Basel, 8:6 (2016), 51  crossref  mathscinet  zmath  isi  scopus
    11. M. V. Neschadim, “Obobschennye funktsionalno-invariantnye resheniya volnovogo uravneniya v razmernosti 2”, Sib. zhurn. chist. i prikl. matem., 17:3 (2017), 58–66  mathnet  crossref
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:501
    Full text:198
    References:70
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020