General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mat. Sb.:

Personal entry:
Save password
Forgotten password?

Mat. Sb., 2013, Volume 204, Number 9, Pages 115–160 (Mi msb8168)  

This article is cited in 23 scientific papers (total in 23 papers)

The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system

E. A. Rakhmanovab, S. P. Suetinb

a University of South Florida
b Steklov Mathematical Institute of the Russian Academy of Sciences

Abstract: The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the $\mathscr S$-property in a harmonic external field. The existence problem for $\mathscr S$-compact sets is solved in Theorem 2.
The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potential theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the ‘$1/9$’-conjecture.
The relation of the result obtained here to some results and conjectures due to Nuttall is discussed.
Bibliography: 51 titles.

Keywords: orthogonal polynomials, Hermite-Padé polynomials, distribution of zeros, stationary compact set, Nuttall condenser.
Author to whom correspondence should be addressed


Full text: PDF file (928 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2013, 204:9, 1347–1390

Bibliographic databases:

UDC: 517.53
MSC: 26C10, 41A10, 42C05
Received: 29.08.2012 and 10.06.2013

Citation: E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system”, Mat. Sb., 204:9 (2013), 115–160; Sb. Math., 204:9 (2013), 1347–1390

Citation in format AMSBIB
\by E.~A.~Rakhmanov, S.~P.~Suetin
\paper The distribution of the zeros of the Hermite-Pad\'e polynomials for a~pair of functions forming a~Nikishin system
\jour Mat. Sb.
\yr 2013
\vol 204
\issue 9
\pages 115--160
\jour Sb. Math.
\yr 2013
\vol 204
\issue 9
\pages 1347--1390

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191  mathnet  crossref  crossref  isi  elib  elib
    2. M. A. Lapik, “Formula Buyarova–Rakhmanova dlya vneshnego polya v vektornoi zadache ravnovesiya logarifmicheskogo potentsiala”, Preprinty IPM im. M. V. Keldysha, 2014, 082, 15 pp.  mathnet
    3. V. I. Buslaev, S. P. Suetin, “An extremal problem in potential theory”, Russian Math. Surveys, 69:5 (2014), 915–917  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. V. I. Buslaev, S. P. Suetin, “Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions”, Russian Math. Surveys, 69:1 (2014), 159–161  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. G. López Lagomasino, S. Medina Peralta, “On the convergence of type I Hermite–Padé approximants”, Adv. Math., 273 (2015), 124–148  crossref  mathscinet  isi  scopus
    6. A. B. J. Kuijlaars, G. L. F. Silva, “S-curves in polynomial external fields”, J. Approx. Theory, 191 (2015), 1–37  crossref  mathscinet  zmath  isi  elib  scopus
    7. A. I. Aptekarev, D. N. Toulyakov, W. Van Assche, “Hyperelliptic uniformization of algebraic curves of the third order”, J. Comput. Appl. Math., 284 (2015), 38–49  crossref  mathscinet  zmath  isi  elib  scopus
    8. V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290:1 (2015), 256–263  mathnet  crossref  crossref  isi  elib  elib
    9. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russian Math. Surveys, 70:6 (2015), 1179–1181  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field”, Sb. Math., 206:2 (2015), 211–224  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russian Math. Surveys, 71:2 (2016), 373–375  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. E. A. Rakhmanov, “The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206:SI (2016), 48–67  crossref  mathscinet  zmath  isi  scopus
    15. A. Martinez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, ed. D. Hardin, D. Lubinsky, B. Simanek, Amer. Math. Soc., Providence, RI, 2016, 199–228  crossref  mathscinet  zmath  isi
    16. S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    17. A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russian Math. Surveys, 72:4 (2017), 671–706  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    18. E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. G. López Lagomasino, W. Van Assche, “Riemann-Hilbert analysis for a Nikishin system”, Sb. Math., 209:7 (2018), 1019–1050  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    21. S. P. Suetin, “Equivalence of a Scalar and a Vector Equilibrium Problem for a Pair of Functions Forming a Nikishin System”, Math. Notes, 106:6 (2019), 971–980  mathnet  crossref  crossref  isi  elib
    22. Aptekarev I A. Denisov S.A. Yattselev M.L., “Self-Adjoint Jacobi Matrices on Trees and Multiple Orthogonal Polynomials”, Trans. Am. Math. Soc., 373:2 (2020), 875–917  crossref  mathscinet  zmath  isi
    23. N. R. Ikonomov, S. P. Suetin, “Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite–Padé Polynomials of Type II”, Proc. Steklov Inst. Math., 309 (2020), 159–182  mathnet  crossref  crossref  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:483
    Full text:142
    First page:33

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020