RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2004, Volume 195, Number 5, Pages 59–78 (Mi msb821)  

This article is cited in 9 scientific papers (total in 9 papers)

Parallelotopes of non-zero width

V. P. Grishukhin

Central Economics and Mathematics Institute, RAS

Abstract: In 1959, Venkov introduced a concept of polytope of non-zero width in the direction of a subspace and studied parallelotopes of non-zero width. In the present paper properties of a parallelotope of non-zero width in the direction of a straight line are investigated. In particular, it is proved that a parallelotope of non-zero width in the direction of a straight line is the Minkowski sum of a parallelotope of width zero and a segment of this line. Necessary and sufficient conditions ensuring that the sum of a parallelotope and a line segment is again a parallelotope are presented.

DOI: https://doi.org/10.4213/sm821

Full text: PDF file (321 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2004, 195:5, 669–686

Bibliographic databases:

UDC: 511.9
MSC: Primary 52B11; Secondary 52C22
Received: 20.03.2003

Citation: V. P. Grishukhin, “Parallelotopes of non-zero width”, Mat. Sb., 195:5 (2004), 59–78; Sb. Math., 195:5 (2004), 669–686

Citation in format AMSBIB
\Bibitem{Gri04}
\by V.~P.~Grishukhin
\paper Parallelotopes of non-zero width
\jour Mat. Sb.
\yr 2004
\vol 195
\issue 5
\pages 59--78
\mathnet{http://mi.mathnet.ru/msb821}
\crossref{https://doi.org/10.4213/sm821}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2091639}
\zmath{https://zbmath.org/?q=an:1086.52004}
\elib{http://elibrary.ru/item.asp?id=14347586}
\transl
\jour Sb. Math.
\yr 2004
\vol 195
\issue 5
\pages 669--686
\crossref{https://doi.org/10.1070/SM2004v195n05ABEH000821}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000224059000003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4644340313}


Linking options:
  • http://mi.mathnet.ru/eng/msb821
  • https://doi.org/10.4213/sm821
  • http://mi.mathnet.ru/eng/msb/v195/i5/p59

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Grishukhin, “Free and Nonfree Voronoi Polyhedra”, Math. Notes, 80:3 (2006), 355–365  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. V. P. Grishukhin, “Minkowski sum of a parallelotope and a segment”, Sb. Math., 197:10 (2006), 1417–1433  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. Horváth Á.G., “On the connection between the projection and the extension of a parallelotope”, Monatsh. Math., 150:3 (2007), 211–216  crossref  mathscinet  zmath  isi
    4. Deza M., Grishukhin V.P., “More about the 52 four-dimensional parallelotopes”, Taiwanese J. Math., 12:4 (2008), 901–916  crossref  mathscinet  zmath  isi  elib
    5. Dutour Sikirić M., Grishukhin V., “The decomposition of the hypermetric cone into $L$-domains”, European J. Combin., 30:4 (2009), 853–865  crossref  mathscinet  zmath  isi  elib
    6. A. Végh, “On the orthogonal projections of Dirichlet–Voronoi cells of lattices”, Beitr. Algebra Geom., 52:2 (2011), 487–493  crossref  mathscinet  zmath
    7. V. P. Grishukhin, “Delaunay and Voronoi polytopes of the root lattice $E_7$ and of the dual lattice $E_7^*$”, Proc. Steklov Inst. Math., 275 (2011), 60–77  mathnet  crossref  mathscinet  isi  elib  elib
    8. V. P. Grishukhin, “The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$”, Sb. Math., 203:11 (2012), 1571–1588  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. M. D. Sikirić, V. Grishukhin, A. Magazinov, “On the sum of a parallelotope and a zonotope”, European J. Combin., 42 (2014), 49–73  crossref  mathscinet  zmath  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:315
    Full text:111
    References:60
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019