|
This article is cited in 1 scientific paper (total in 1 paper)
Smooth solutions of the Navier-Stokes equations
S. I. Pokhozhaev Steklov Mathematical Institute of the Russian Academy of Sciences
Abstract:
We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to $x\in\mathbb R^3$.
We obtain existence theorems for global (with respect to $t>0$) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on $t$, are also obtained.
Bibliography: 10 titles.
Keywords:
Navier-Stokes equations, smooth (strong) solutions, bounds for solutions.
DOI:
https://doi.org/10.4213/sm8226
Full text:
PDF file (489 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2014, 205:2, 277–290
Bibliographic databases:
UDC:
517.954
MSC: 76D05 Received: 25.02.2013 and 13.06.2013
Citation:
S. I. Pokhozhaev, “Smooth solutions of the Navier-Stokes equations”, Mat. Sb., 205:2 (2014), 131–144; Sb. Math., 205:2 (2014), 277–290
Citation in format AMSBIB
\Bibitem{Pok14}
\by S.~I.~Pokhozhaev
\paper Smooth solutions of the Navier-Stokes equations
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 2
\pages 131--144
\mathnet{http://mi.mathnet.ru/msb8226}
\crossref{https://doi.org/10.4213/sm8226}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3157472}
\zmath{https://zbmath.org/?q=an:06351088}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..277P}
\elib{https://elibrary.ru/item.asp?id=21277068}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 2
\pages 277--290
\crossref{https://doi.org/10.1070/SM2014v205n02ABEH004375}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000334592600005}
\elib{https://elibrary.ru/item.asp?id=21873135}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898929267}
Linking options:
http://mi.mathnet.ru/eng/msb8226https://doi.org/10.4213/sm8226 http://mi.mathnet.ru/eng/msb/v205/i2/p131
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Addendum
This publication is cited in the following articles:
-
A. A. Ilyin, “A class of sharp inequalities for periodic functions. Addendum to the paper “Smooth solutions of the Navier-Stokes equations” by S. I. Pokhozhaev”, Sb. Math., 205:2 (2014), 220–223
|
Number of views: |
This page: | 907 | Full text: | 167 | References: | 92 | First page: | 84 |
|