RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2014, Volume 205, Number 8, Pages 13–40 (Mi msb8236)  

A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space

V. M. Kaplitskiiab

a Southern Federal University, Rostov-on-Don
b South Mathematical Institute of VSC RAS

Abstract: The function $\Psi(x, y, s)=e^{iy}\Phi(-e^{iy},s,x)$, where $\Phi(z,s,v)$ is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation:
$$ L[\Psi]=\frac{\partial^2\Psi}{\partial x \partial y}+i(x-1)\frac{\partial\Psi}{\partial x}+\frac{i}{2}\Psi=\lambda\Psi, $$
where $s={1}/{2}+i\lambda$. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space $L_2(\Pi)$, where $\Pi=(0,1)\times(0,2\pi)$. We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of $\Psi(x,y,s)$. We discuss sufficient conditions for these formal solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function.
Bibliography: 15 titles.

Keywords: Lerch's transcendent, Hilbert space, symmetric operator, eigenfunction.

DOI: https://doi.org/10.4213/sm8236

Full text: PDF file (602 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2014, 205:8, 1080–1106

Bibliographic databases:

UDC: 517.98
MSC: 11M35, 58J45, 47B25, 40A30
Received: 04.04.2013 and 17.04.2014

Citation: V. M. Kaplitskii, “A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space”, Mat. Sb., 205:8 (2014), 13–40; Sb. Math., 205:8 (2014), 1080–1106

Citation in format AMSBIB
\Bibitem{Kap14}
\by V.~M.~Kaplitskii
\paper A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 8
\pages 13--40
\mathnet{http://mi.mathnet.ru/msb8236}
\crossref{https://doi.org/10.4213/sm8236}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3288203}
\zmath{https://zbmath.org/?q=an:06381831}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1080K}
\elib{http://elibrary.ru/item.asp?id=21826642}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 8
\pages 1080--1106
\crossref{https://doi.org/10.1070/SM2014v205n08ABEH004411}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344080700002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908110148}


Linking options:
  • http://mi.mathnet.ru/eng/msb8236
  • https://doi.org/10.4213/sm8236
  • http://mi.mathnet.ru/eng/msb/v205/i8/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:932
    Full text:99
    References:126
    First page:93

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020