RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2014, Volume 205, Number 1, Pages 105–160 (Mi msb8241)  

This article is cited in 3 scientific papers (total in 3 papers)

Topological classification of systems of Kovalevskaya-Yehia type

N. S. Slavina

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: All the Fomenko-Zieschang invariants are calculated for the Kovalevskaya-Yehia problem, for all noncritical values of the parameters $g$ and $\lambda$, by constructing admissible systems of coordinates and determining the mutual disposition of the basis cycles. The family of Kovalevskaya-Yehia systems contains 29 pairwise Liouville non-equivalent foliations. These foliations include those that are equivalent to previously known foliations, which arose in the integrable cases of Kovalevskaya and of Kovalevskaya-Yehia for $g=0$, in the Zhukovskiǐ case, and in the Goryachev-Chaplygin-Sretenskiǐ case. Eleven new foliations are included in the 29 foliations, new in the sense that they are not Liouville equivalent to any foliations discovered earlier which arose in the known integrable cases of the rigid body. The topological type of the Liouville foliation for the family of Kovalevskaya-Yehia systems stabilizes at large values of the energy $H$, and this ‘high-energy’ system is roughly Liouville equivalent, at one of the energy levels, to the Goryachev-Chaplygin-Sretenskiǐ integrable case, which is already known.
Bibliography: 29 titles.

Keywords: Fomenko-Zieschang invariants, Liouville foliation, Liouville equivalent integrable systems.

Funding Agency Grant Number
Russian Foundation for Basic Research 13-01-00664a
Ministry of Education and Science of the Russian Federation НШ-1410.2012.1


DOI: https://doi.org/10.4213/sm8241

Full text: PDF file (2267 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2014, 205:1, 101–155

Bibliographic databases:

UDC: 517.938.5
MSC: Primary 37J35; Secondary 70E17
Received: 22.04.2013

Citation: N. S. Slavina, “Topological classification of systems of Kovalevskaya-Yehia type”, Mat. Sb., 205:1 (2014), 105–160; Sb. Math., 205:1 (2014), 101–155

Citation in format AMSBIB
\Bibitem{Sla14}
\by N.~S.~Slavina
\paper Topological classification of systems of Kovalevskaya-Yehia type
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 1
\pages 105--160
\mathnet{http://mi.mathnet.ru/msb8241}
\crossref{https://doi.org/10.4213/sm8241}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3185276}
\zmath{https://zbmath.org/?q=an:06351082}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..101S}
\elib{http://elibrary.ru/item.asp?id=21277061}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 1
\pages 101--155
\crossref{https://doi.org/10.1070/SM2014v205n01ABEH004369}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000333171800006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897003970}


Linking options:
  • http://mi.mathnet.ru/eng/msb8241
  • https://doi.org/10.4213/sm8241
  • http://mi.mathnet.ru/eng/msb/v205/i1/p105

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Moscow University Mathematics Bulletin, 71:3 (2016), 119–123  mathnet  crossref  mathscinet  isi
    2. V. V. Fokicheva, A. T. Fomenko, “Billiard systems as the models for the rigid body dynamics”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, ed. V. Sadovnichiy, M. Zgurovsky, Springer, Cham, 2016, 13–33  crossref  mathscinet  zmath  isi  scopus
    3. V. A. Kibkalo, “Topologicheskaya klassifikatsiya sloenii Liuvillya dlya integriruemogo sluchaya Kovalevskoi na algebre Li $\operatorname{so}(4)$”, Matem. sb., 210:5 (2019), 3–40  mathnet  crossref  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:307
    Full text:123
    References:40
    First page:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019