RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2014, Volume 205, Number 5, Pages 23–36 (Mi msb8280)  

This article is cited in 1 scientific paper (total in 1 paper)

On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6

V. V. Gorbatsevich

Moscow State Aviation Technological University, Moscow

Abstract: In this paper, the frames of spaces of complex $n$-dimensional Lie algebras (that is, the intersections of all irreducible components of these spaces) are studied. A complete description of the frames and their projectivizations for $n\le 6$ is given. It is also proved that for $n\le 6$ the projectivizations of these spaces are simply connected.
Bibliography: 7 titles.

Keywords: Lie algebra, irreducible component, nilpotent Lie algebra, contraction.

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00465a


DOI: https://doi.org/10.4213/sm8280

Full text: PDF file (474 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2014, 205:5, 633–645

Bibliographic databases:

UDC: 512.554.3
MSC: Primary 17B05; Secondary 17B30, 17B40
Received: 26.08.2013 and 25.09.2013

Citation: V. V. Gorbatsevich, “On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6”, Mat. Sb., 205:5 (2014), 23–36; Sb. Math., 205:5 (2014), 633–645

Citation in format AMSBIB
\Bibitem{Gor14}
\by V.~V.~Gorbatsevich
\paper On the frames of spaces of finite-dimensional Lie algebras of dimension at most~6
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 5
\pages 23--36
\mathnet{http://mi.mathnet.ru/msb8280}
\crossref{https://doi.org/10.4213/sm8280}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3242630}
\zmath{https://zbmath.org/?q=an:06349844}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..633G}
\elib{https://elibrary.ru/item.asp?id=21826619}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 5
\pages 633--645
\crossref{https://doi.org/10.1070/SM2014v205n05ABEH004391}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344080100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905018899}


Linking options:
  • http://mi.mathnet.ru/eng/msb8280
  • https://doi.org/10.4213/sm8280
  • http://mi.mathnet.ru/eng/msb/v205/i5/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Gorbatsevich, “Nekotorye svoistva pochti abelevykh algebr Li”, Izv. vuzov. Matem., 2020, no. 4, 26–42  mathnet  crossref
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:218
    Full text:78
    References:20
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020