RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find



Search through the site:
Find



Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2004, Volume 195, Number 7, Pages 37–70 (Mi msb834)  

This article is cited in 10 scientific papers (total in 10 papers)


PDF version     HTML version

Extensions of $C^*$-algebras by partial isometries

A. V. Lebedeva, A. Odzijewiczb

a Belarusian State University
b University of Bialystok

Abstract: The structure of the $C^*$-algebra generated by a $*$-algebra $\mathscr A$ and a partial isometry inducing an endomorphism of $\mathscr A$ is investigated.

UDC: 517.9

MSC: 46L35, 47L30

Received: 17.07.2003 and 21.01.2004

Citation: A. V. Lebedev, A. Odzijewicz, “Extensions of $C^*$-algebras by partial isometries”, Mat. Sb., 195:7 (2004), 37–70

Citation in format AMSBIB
\Bibitem{LebOdz04}
\by A.~V.~Lebedev, A.~Odzijewicz
\paper Extensions of $C^*$-algebras by partial isometries
\jour Mat. Sb.
\yr 2004
\vol 195
\issue 7
\pages 37--70
\mathnet{http://mi.mathnet.ru/msb834}
\crossref{http://dx.doi.org/10.4213/sm834}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101333}
\zmath{http://zbmath.org/?q=an:1081.46037}
\transl
\jour Sb. Math.
\yr 2004
\vol 195
\issue 7
\pages 951--982
\crossref{http://dx.doi.org/10.1070/SM2004v195n07ABEH000834}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000225029800003}


DOI: 10.4213/sm834

Linking options:
  • http://mi.mathnet.ru/eng/msb834
  • http://dx.doi.org/10.4213/sm834
  • http://mi.mathnet.ru/eng/msb/v195/i7/p37

    Full text (in Russian): PDF file (398 kB)
    References (in Russian): PDF file   HTML файл

    English version:
    Sbornik: Mathematics, 2004, 195:7, 951–982

    Review databases:
    ISI Web of Knowledge: 000225029800003

    SHARE: VKontakte.ru FaceBook Twitter Ya.ru Mail.ru Liveinternet Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Odzijewicz A., “Noncommutative Kähler-like structures in quantization”, J. Geom. Phys., 57:4 (2007), 1259–1278  crossref  mathscinet  zmath  adsnasa
    2. Б. К. Квасневски, А. В. Лебедев, “Обратимые расширения необратимых динамических систем: $C^*$-метод”, Матем. сб., 199:11 (2008), 45–74  mathnet  crossref  mathscinet  zmath  adsnasa  elib; B. K. Kwaśniewski, A. V. Lebedev, “Reversible extensions of irreversible dynamical systems: the $C^*$-method”, Sb. Math., 199:11 (2008), 1621–1648  crossref
    3. Cho I., Jorgensen P.E.T., “$C^*$-subalgebras generated by a single operator in $B(H)$”, Acta Appl. Math., 108:3 (2009), 625–664  crossref  mathscinet  zmath
    4. Kwaśniewski B.K., Lebedev A.V., “Crossed product of a $C^*$-algebra by a semigroup of endomorphisms generated by partial isometries”, Integral Equations Operator Theory, 63:3 (2009), 403–425  crossref  mathscinet  zmath
    5. Cho I., Jorgensen P., “$C^*$-subalgebras generated by partial isometries”, J. Math. Phys., 50:2 (2009), 023516, 43 pp.  crossref  mathscinet  zmath  adsnasa
    6. Kuznetsova A.Yu., “On a Class of C*-Algebras Generated by a Countable Family of Partial Isometries”, Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences, 45:6 (2010), 320–328  crossref  mathscinet
    7. А. Б. Антоневич, В. И. Бахтин, А. В. Лебедев, “Скрещенное произведение $C^*$-алгебры на эндоморфизм, алгебры коэффициентов и трансфер-операторы”, Матем. сб., 202:9 (2011), 3–34  mathnet  crossref  mathscinet  zmath; A. B. Antonevich, V. I. Bakhtin, A. V. Lebedev, “Crossed product of a $C^*$-algebra by an endomorphism, coefficient algebras and transfer operators”, Sb. Math., 202:9 (2011), 1253–1283  crossref
    8. Ilwoo Cho, “Histories Distorted by Partial Isometries”, J. Phys. Math, 3 (2011), 1  crossref  mathscinet
    9. А. Ю. Кузнецова, Е. В. Патрин, “Об одном классе $C^*$-алгебр, порожденных семейством частичных изометрий и мультипликаторами”, Изв. вузов. Матем., 2012, № 6, 44–55  mathnet  mathscinet; A. Yu. Kuznetsova, E. V. Patrin, “One class of $C^*$-algebras generated by a family of partial isometries and multiplicators”, Russian Math. (Iz. VUZ), 56:6 (2012), 37–47  crossref
    10. Б. К. Квасневски, “$C^*$-алгебры, ассоциированные с обратимыми расширениями логистических отображений”, Матем. сб., 203:10 (2012), 71–116  mathnet  crossref  mathscinet  zmath; B. K. Kwaśniewski, “$C^*$-algebras associated with reversible extensions of logistic maps”, Sb. Math., 203:10 (2012), 1448–1489  crossref
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:161
    Full text:62
    References:4
    First page:1

     
    Contact us:
     Terms of Use  Registration © Steklov Mathematical Institute RAS, 2014