RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2014, Volume 205, Number 12, Pages 111–140 (Mi msb8343)  

This article is cited in 1 scientific paper (total in 1 paper)

Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles

I. Kh. Sabitov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study infinitesimal bendings of surfaces of revolution with flattening at the poles. We begin by considering the minimal possible smoothness class $C^1$ both for surfaces and for deformation fields. Conditions are formulated for a given harmonic of a first-order infinitesimal bending to be extendable into a second order infinitesimal bending. We finish by stating a criterion for nonrigidity of second order for closed surfaces of revolution in the analytic class. We also give the first concrete example of such a nonrigid surface.
Bibliography: 15 entries.

Keywords: surfaces of revolution, pole, order of flattening, second-order infinitesimal bendings, rigidity.

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01-90415-УКРа


DOI: https://doi.org/10.4213/sm8343

Full text: PDF file (674 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2014, 205:12, 1787–1814

Bibliographic databases:

UDC: 514.772.35
MSC: 53A05
Received: 06.02.2014 and 28.08.2014

Citation: I. Kh. Sabitov, “Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles”, Mat. Sb., 205:12 (2014), 111–140; Sb. Math., 205:12 (2014), 1787–1814

Citation in format AMSBIB
\Bibitem{Sab14}
\by I.~Kh.~Sabitov
\paper Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 12
\pages 111--140
\mathnet{http://mi.mathnet.ru/msb8343}
\crossref{https://doi.org/10.4213/sm8343}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3309393}
\zmath{https://zbmath.org/?q=an:06417749}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1787S}
\elib{http://elibrary.ru/item.asp?id=22834503}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 12
\pages 1787--1814
\crossref{https://doi.org/10.1070/SM2014v205n12ABEH004440}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000349436300007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923163013}


Linking options:
  • http://mi.mathnet.ru/eng/msb8343
  • https://doi.org/10.4213/sm8343
  • http://mi.mathnet.ru/eng/msb/v205/i12/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Kh. Sabitov, “The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research”, Trans. Moscow Math. Soc., 77 (2016), 149–175  mathnet  crossref  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:264
    Full text:71
    References:39
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019