RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2015, Volume 206, Number 1, Pages 5–28 (Mi msb8345)  

Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces

A. Boivina, P. M. Gauthierb, P. V. Paramonovc

a University of Western Ontario
b Université de Montréal
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper we study several settings of the $C^m$-subharmonic extension problem on open Riemann surfaces. The problem is completely solved (for all $m\in[0,+\infty)$) for so-called Runge-type extensions. Several (in some sense sharp) sufficient conditions and counterexamples are found also for Walsh-type extensions. As applications, these results allow us to prove the existence of $C^m$-subharmonic extensions, automorphic with respect to some appropriate groups of automorphisms of an open Riemann surface.
Bibliography: 22 titles.

Keywords: subharmonic function, Riemann surface, Green function, localization operator, automorphism group.

Funding Agency Grant Number
Natural Sciences and Engineering Research Council of Canada (NSERC)
Ministry of Education and Science of the Russian Federation НШ-2900.2014.1
All the authors were partially supported by grants from NSERC (Canada). The research of the third author was also partially supported by the Programme for the Support of Leading Scientific Schools of the Russian Federation (grant no. НШ-2900.2014.1).


DOI: https://doi.org/10.4213/sm8345

Full text: PDF file (623 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2015, 206:1, 3–23

Bibliographic databases:

UDC: 517.574+517.545
MSC: 31A05, 30F99
Received: 11.02.2014 and 26.06.2014

Citation: A. Boivin, P. M. Gauthier, P. V. Paramonov, “Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces”, Mat. Sb., 206:1 (2015), 5–28; Sb. Math., 206:1 (2015), 3–23

Citation in format AMSBIB
\Bibitem{BoiGauPar15}
\by A.~Boivin, P.~M.~Gauthier, P.~V.~Paramonov
\paper Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces
\jour Mat. Sb.
\yr 2015
\vol 206
\issue 1
\pages 5--28
\mathnet{http://mi.mathnet.ru/msb8345}
\crossref{https://doi.org/10.4213/sm8345}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3354959}
\zmath{https://zbmath.org/?q=an:06439405}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206....3B}
\elib{http://elibrary.ru/item.asp?id=23421595}
\transl
\jour Sb. Math.
\yr 2015
\vol 206
\issue 1
\pages 3--23
\crossref{https://doi.org/10.1070/SM2015v206n01ABEH004443}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000351527000002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925272621}


Linking options:
  • http://mi.mathnet.ru/eng/msb8345
  • https://doi.org/10.4213/sm8345
  • http://mi.mathnet.ru/eng/msb/v206/i1/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:335
    Full text:59
    References:40
    First page:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019