RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2015, Volume 206, Number 12, Pages 119–144 (Mi msb8367)  

This article is cited in 1 scientific paper (total in 1 paper)

A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order

F. S. Myshakov, A. Yu. Popov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A best possible second term is found in Gol'dberg's theorem on an asymptotic upper estimate for the logarithm of the maximum modulus of an entire function of integer order.
Bibliography: 9 titles.

Keywords: entire function of integer order, type of an entire function with respect to a proximate order, slowly varying function, asymptotic estimate.

DOI: https://doi.org/10.4213/sm8367

Full text: PDF file (615 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2015, 206:12, 1771–1796

Bibliographic databases:

Document Type: Article
UDC: 517.547.22
MSC: 30D20
Received: 27.03.2014 and 04.06.2015

Citation: F. S. Myshakov, A. Yu. Popov, “A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order”, Mat. Sb., 206:12 (2015), 119–144; Sb. Math., 206:12 (2015), 1771–1796

Citation in format AMSBIB
\Bibitem{MysPop15}
\by F.~S.~Myshakov, A.~Yu.~Popov
\paper A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order
\jour Mat. Sb.
\yr 2015
\vol 206
\issue 12
\pages 119--144
\mathnet{http://mi.mathnet.ru/msb8367}
\crossref{https://doi.org/10.4213/sm8367}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3438577}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1771M}
\elib{http://elibrary.ru/item.asp?id=24850642}
\transl
\jour Sb. Math.
\yr 2015
\vol 206
\issue 12
\pages 1771--1796
\crossref{https://doi.org/10.1070/SM2015v206n12ABEH004513}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000370791500006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959903857}


Linking options:
  • http://mi.mathnet.ru/eng/msb8367
  • https://doi.org/10.4213/sm8367
  • http://mi.mathnet.ru/eng/msb/v206/i12/p119

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. G. Braichev, V. B. Sherstyukov, “Tochnye otsenki asimptoticheskikh kharakteristik rosta tselykh funktsii s nulyami na zadannykh mnozhestvakh”, Fundament. i prikl. matem., 22:1 (2018), 51–97  mathnet
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:272
    Full text:14
    References:35
    First page:46

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019