RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2016, Volume 207, Number 12, Pages 3–29 (Mi msb8369)  

This article is cited in 7 scientific papers (total in 7 papers)

Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order

Z. S. Aliyevab

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
b Faculty of Mechanics and Mathematics, Baku State University, Azerbaijan

Abstract: Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua.
Bibliography: 42 titles.

Keywords: bifurcation point, bifurcation interval, eigenvalue, eigenfunction, continuum of solutions.

DOI: https://doi.org/10.4213/sm8369

Full text: PDF file (698 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:12, 1625–1649

Bibliographic databases:

UDC: 517.927.25
MSC: Primary 34B15, 34C23; Secondary 34B08
Received: 30.03.2014 and 27.06.2016

Citation: Z. S. Aliyev, “Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order”, Mat. Sb., 207:12 (2016), 3–29; Sb. Math., 207:12 (2016), 1625–1649

Citation in format AMSBIB
\Bibitem{Ali16}
\by Z.~S.~Aliyev
\paper Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 12
\pages 3--29
\mathnet{http://mi.mathnet.ru/msb8369}
\crossref{https://doi.org/10.4213/sm8369}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588983}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1625A}
\elib{http://elibrary.ru/item.asp?id=27485037}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 12
\pages 1625--1649
\crossref{https://doi.org/10.1070/SM8369}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000394542200001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014239617}


Linking options:
  • http://mi.mathnet.ru/eng/msb8369
  • https://doi.org/10.4213/sm8369
  • http://mi.mathnet.ru/eng/msb/v207/i12/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. A. Huseynova, “Global bifurcation from principal eigenvalues for nonlinear fourth order eigenvalue problem with indefinite weight”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 42:2 (2016), 202–211  mathscinet  zmath  isi
    2. Z. S. Aliyev, R. A. Huseynova, “Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight”, Electron. J. Qual. Theory Differ. Equ., 2017, 92, 12 pp.  crossref  mathscinet  isi  scopus
    3. N. A. Mustafayeva, “On the structure of global continua of solutions bifurcating from infinity of some nonlinear fourth order eigenvalue problems”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43:2 (2017), 270–277  mathscinet  zmath  isi
    4. Z. S. Aliyev, N. A. Mustafayeva, “Bifurcation of solutions from infinity for certain nonlinear eigenvalue problems of fourth-order ordinary differential equations”, Electron. J. Differ. Equ., 2018, 98, 19 pp.  zmath  isi
    5. Z. S. Aliyev, R. A. Huseynova, “Global bifurcation from infinity in some nonlinearizable eigenvalue problems with indefinite weight”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:1 (2018), 123–134  isi
    6. P. R. Manafova, “Bifurcation of solutions of nonlinearizable Dirac problems with spectral parameter in the boundary condition”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:2 (2018), 318–327  mathscinet  isi
    7. Z. S. Aliyev, Sh. M. Hasanova, “Global bifurcation of positive solutions of semi-linear elliptic partial differential equations with indefinite weight”, Z. Anal. Anwend., 38:1 (2019), 1–15  crossref  mathscinet  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:399
    References:40
    First page:92

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019