|
This article is cited in 13 scientific papers (total in 13 papers)
Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces
V. E. Fedorov Chelyabinsk State University
Abstract:
The problem of the existence of an exponentially bounded solution semigroup strongly holomorphic in a sector is studied for a Sobolev-type linear equation
\begin{equation}
L\dot u=Mu
\end{equation}
with continuous operator $L\colon\mathfrak U\to\mathfrak F$, $\ker L\ne\{0\}$,
and closed densely defined operator $M\colon\operatorname{dom}M\to\mathfrak F$, where
$\mathfrak U$ and $\mathfrak F$ are sequentially complete locally convex spaces.
It is shown that the condition of the $(L,p)$-sectoriality of the operator $M$, which generalizes the well known condition of sectoriality, is necessary and sufficient for the existence of such semigroups degenerate at the $M$-associated vectors of the operator $L$
of height $p$ and lower and the existence of pairs of invariant subspaces of the operators $L$ and $M$. Generalizations of Yosida's theorem and results on the existence of a holomorphic solution semigroup for equation (1) in Banach spaces are obtained. These results are used in the study of the weakened Cauchy problem for equation (1) and for the corresponding non-linear equation. One application of the abstract results is a theorem on sufficient conditions for the solubility of the Cauchy problem for a class of equations in Fréchet spaces of a special kind. It is used in the analysis of the periodic Cauchy problem for a partial differential equation with displacement not solved with respect to the time derivative.
DOI:
https://doi.org/10.4213/sm841
Full text:
PDF file (424 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2004, 195:8, 1205–1234
Bibliographic databases:
UDC:
517.9
MSC: Primary 47D06; Secondary 47N20 Received: 25.07.2003 and 30.01.2004
Citation:
V. E. Fedorov, “Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces”, Mat. Sb., 195:8 (2004), 131–160; Sb. Math., 195:8 (2004), 1205–1234
Citation in format AMSBIB
\Bibitem{Fed04}
\by V.~E.~Fedorov
\paper Holomorphic solution semigroups for Sobolev-type equations in~locally convex spaces
\jour Mat. Sb.
\yr 2004
\vol 195
\issue 8
\pages 131--160
\mathnet{http://mi.mathnet.ru/msb841}
\crossref{https://doi.org/10.4213/sm841}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101340}
\zmath{https://zbmath.org/?q=an:1082.47034}
\transl
\jour Sb. Math.
\yr 2004
\vol 195
\issue 8
\pages 1205--1234
\crossref{https://doi.org/10.1070/SM2004v195n08ABEH000841}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000225029800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-8744254400}
Linking options:
http://mi.mathnet.ru/eng/msb841https://doi.org/10.4213/sm841 http://mi.mathnet.ru/eng/msb/v195/i8/p131
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. E. Fedorov, O. A. Ruzakova, “On solvability of perturbed Sobolev type equations”, St. Petersburg Math. J., 20:4 (2009), 645–664
-
V. E. Fedorov, “Golomorfnye polugruppy operatorov s silnym vyrozhdeniem”, Vestnik ChelGU, 2008, no. 10, 68–74
-
A. V. Urazaeva, V. E. Fedorov, “On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations”, Math. Notes, 85:3 (2009), 426–436
-
M. V. Plekhanova, A. F. Islamova, “Issledovanie linearizovannoi sistemy uravnenii Bussineska metodami teorii vyrozhdennykh polugrupp”, Vestnik ChelGU, 2009, no. 11, 62–69
-
O. A. Ruzakova, E. A. Oleinik, “Ob upravlyaemosti lineinykh uravnenii sobolevskogo tipa s otnositelno sektorialnym operatorom”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 54–61
-
Fedorov V.E., Debbouche A., “A Class of Degenerate Fractional Evolution Systems in Banach Spaces”, Differ. Equ., 49:12 (2013), 1569–1576
-
M. V. Plekhanova, “Sistemy optimalnosti dlya vyrozhdennykh raspredelennykh zadach upravleniya”, Vestnik ChelGU, 2013, no. 16, 60–70
-
A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27
-
A. L. Shestakov, G. A. Sviridyuk, M. D. Butakova, “The mathematical modelling of the production of construction mixtures with prescribed properties”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:1 (2015), 100–110
-
A. A. Zamyshlyaeva, D. K. T. Al-Isavi, “Golomorfnye vyrozhdennye polugruppy operatorov i evolyutsionnye uravneniya sobolevskogo tipa v kvazisobolevykh prostranstvakh posledovatelnostei”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 27–36
-
Fedorov V.E., Gordievskikh D.M., Plekhanova M.V., “Equations in Banach Spaces With a Degenerate Operator Under a Fractional Derivative”, Differ. Equ., 51:10 (2015), 1360–1368
-
J. K. T. Al-Isawi, “On kernels and images of resolving analytic degenerate semigroups in quasi-Sobolev spaces”, J. Comp. Eng. Math., 3:1 (2016), 10–19
-
V. E. Fedorov, E. A. Romanova, A. Debbouche, “Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order”, J. Math. Sci., 228:4 (2018), 380–394
|
Number of views: |
This page: | 354 | Full text: | 141 | References: | 51 | First page: | 1 |
|