RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2015, Volume 206, Number 2, Pages 5–30 (Mi msb8428)  

This article is cited in 16 scientific papers (total in 16 papers)

Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions

V. I. Buslaevab

a Steklov Mathematical Institute of Russian Academy of Sciences
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow

Abstract: We prove the convergence of $m$-point Padé approximants of an $m$-tuple of holomorphic germs that admit analytic continuation along all paths in the extended complex plane that do not pass through a finite set of points. This result extends Stahl's theorem from the case $m=1$ to the case of an arbitrary $m\in\mathbb N$.
Bibliography: 15 titles.

Keywords: rational approximation, orthogonal polynomials, Padé approximants, convergence in capacity, limiting distribution of poles.

Funding Agency Grant Number
Russian Science Foundation 14-21-00025
This research was supported by the Russian Science Foundation under grant no. 14-21-00025.


DOI: https://doi.org/10.4213/sm8428

Full text: PDF file (620 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2015, 206:2, 175–200

Bibliographic databases:

UDC: 517.53
MSC: 41A21, 30E10, 42C05
Received: 28.07.2014

Citation: V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Mat. Sb., 206:2 (2015), 5–30; Sb. Math., 206:2 (2015), 175–200

Citation in format AMSBIB
\Bibitem{Bus15}
\by V.~I.~Buslaev
\paper Convergence of $m$-point Pad\'e approximants of a~tuple of multivalued analytic functions
\jour Mat. Sb.
\yr 2015
\vol 206
\issue 2
\pages 5--30
\mathnet{http://mi.mathnet.ru/msb8428}
\crossref{https://doi.org/10.4213/sm8428}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3354969}
\zmath{https://zbmath.org/?q=an:06439414}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..175B}
\elib{http://elibrary.ru/item.asp?id=23421605}
\transl
\jour Sb. Math.
\yr 2015
\vol 206
\issue 2
\pages 175--200
\crossref{https://doi.org/10.1070/SM2015v206n02ABEH004453}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000353302500001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928118815}


Linking options:
  • http://mi.mathnet.ru/eng/msb8428
  • https://doi.org/10.4213/sm8428
  • http://mi.mathnet.ru/eng/msb/v206/i2/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290:1 (2015), 238–255  mathnet  crossref  crossref  isi  elib  elib
    2. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russian Math. Surveys, 70:6 (2015), 1179–1181  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. E. A. Rakhmanov, “The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions”, Russian Math. Surveys, 71:5 (2016), 976–978  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. V. I. Buslaev, “The Capacity of the Rational Preimage of a Compact Set”, Math. Notes, 100:6 (2016), 781–790  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    9. V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67  mathnet  crossref  mathscinet  zmath  isi  scopus
    10. S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russian Math. Surveys, 72:4 (2017), 671–706  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93  mathnet  crossref  crossref  mathscinet  isi  elib
    13. V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. V. I. Buslaev, “On Singular points of Meromorphic Functions Determined by Continued Fractions”, Math. Notes, 103:4 (2018), 527–536  mathnet  crossref  crossref  mathscinet  isi  elib
    15. E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:398
    Full text:71
    References:30
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020