RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2015, Volume 206, Number 5, Pages 127–160 (Mi msb8445)  

This article is cited in 2 scientific papers (total in 2 papers)

Closed geodesics on piecewise smooth surfaces of revolution with constant curvature

I. V. Sypchenko, D. S. Timonina

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A theorem on the structure of breaks of generalized geodesics on piecewise smooth surfaces is established in two dimensions and $n$ dimensions. To illustrate the result, all simple closed geodesics are found: on a cylinder (with bases included), on a surface formed as a union of two spherical caps and on a surface formed as a union of two cones. In the last case the stability of the closed geodesics (in a natural finite-dimensional class of perturbations) is analysed, the conjugate points and the indices of the geodesics are found. This problem is related to finding conjugate points in piecewise smooth billiards and surfaces of revolution.
Bibliography: 40 titles.

Keywords: Riemannian geometry, piecewise smooth surface of revolution, closed geodesics, conjugate points.
Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/sm8445

Full text: PDF file (802 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2015, 206:5, 738–769

Bibliographic databases:

UDC: 514.774.8+514.76
MSC: 53A05, 53C22
Received: 10.11.2014 and 20.11.2014

Citation: I. V. Sypchenko, D. S. Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Mat. Sb., 206:5 (2015), 127–160; Sb. Math., 206:5 (2015), 738–769

Citation in format AMSBIB
\Bibitem{SypTim15}
\by I.~V.~Sypchenko, D.~S.~Timonina
\paper Closed geodesics on piecewise smooth surfaces of revolution with constant curvature
\jour Mat. Sb.
\yr 2015
\vol 206
\issue 5
\pages 127--160
\mathnet{http://mi.mathnet.ru/msb8445}
\crossref{https://doi.org/10.4213/sm8445}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3354993}
\zmath{https://zbmath.org/?q=an:06498427}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..738S}
\elib{http://elibrary.ru/item.asp?id=23421661}
\transl
\jour Sb. Math.
\yr 2015
\vol 206
\issue 5
\pages 738--769
\crossref{https://doi.org/10.1070/SM2015v206n05ABEH004477}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000358449000005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938096322}


Linking options:
  • http://mi.mathnet.ru/eng/msb8445
  • https://doi.org/10.4213/sm8445
  • http://mi.mathnet.ru/eng/msb/v206/i5/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Kudryavtseva, “Liouville integrable generalized billiard flows and Poncelet type theorems”, J. Math. Sci., 225:4 (2017), 611–638  mathnet  crossref  mathscinet  elib
    2. R. K. Klimov, “Closed geodesics on piecewise smooth constant curvature surfaces of revolution”, Moscow University Mathematics Bulletin, 71:6 (2016), 242–247  mathnet  crossref  mathscinet  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:396
    Full text:69
    References:48
    First page:45

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019