|
On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
K. Yu. Fedorovskiyab a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Bauman Moscow State Technical University
Abstract:
We consider the question of the density in the space $L^p$, $1\leq p\leq\infty$, on the unit circle, of the subspaces
$H^p+\sum_{k=1}^mw_kH^p$, where $H^p$ is the standard Hardy space and $w_1,…,w_m$ are given functions in the class $L^\infty$. This question is closely related to problems of uniform and $L^p$-approximations of functions by polyanalytic polynomials on the boundaries of simple connected domains in $\mathbb C$. The obtained
results are formulated in terms of Nevanlinna and $d$-Nevanlinna domains, that is, in terms of special analytic characteristics of simply connected domains in $\mathbb C$, which are related to the pseudocontinuation property of bounded holomorphic functions.
Bibliography: 19 titles.
Keywords:
Nevanlinna domain, $d$-Nevanlinna domain, pseudocontinuation, polyanalytic polynomial, uniform approximation, $L^p$-approximation.
Funding Agency |
Grant Number |
Russian Science Foundation  |
14-21-00025 |
This research was supported by the Russian Science Foundation (project no. 14-21-00025). |
DOI:
https://doi.org/10.4213/sm8455
Full text:
PDF file (561 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2016, 207:1, 140–154
Bibliographic databases:
UDC:
517.53
MSC: Primary 30E10, 30G20; Secondary 41A10 Received: 02.12.2014 and 12.07.2015
Citation:
K. Yu. Fedorovskiy, “On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains”, Mat. Sb., 207:1 (2016), 151–166; Sb. Math., 207:1 (2016), 140–154
Citation in format AMSBIB
\Bibitem{Fed16}
\by K.~Yu.~Fedorovskiy
\paper On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 1
\pages 151--166
\mathnet{http://mi.mathnet.ru/msb8455}
\crossref{https://doi.org/10.4213/sm8455}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3462729}
\zmath{https://zbmath.org/?q=an:06594437}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..140F}
\elib{https://elibrary.ru/item.asp?id=25707807}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 1
\pages 140--154
\crossref{https://doi.org/10.1070/SM8455}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000371797300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963543046}
Linking options:
http://mi.mathnet.ru/eng/msb8455https://doi.org/10.4213/sm8455 http://mi.mathnet.ru/eng/msb/v207/i1/p151
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 278 | Full text: | 56 | References: | 33 | First page: | 36 |
|