RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2016, Volume 207, Number 1, Pages 3–44 (Mi msb8484)  

This article is cited in 5 scientific papers (total in 5 papers)

Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity

È. R. Andriyanovaa, F. Kh. Mukminovb

a Ufa State Aviation Technical University
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa

Abstract: The first mixed problem is investigated for a certain class of parabolic equations with double non-power-law nonlinearities in a cylindrical domain of the form $D=(t>0)\times\Omega$. The domain $\Omega\subset \mathbb R^n$ can be unbounded. The existence of strong solutions in a Sobolev-Orlicz space is proved by the method of Galerkin approximations. A maximum principle is established, and upper and lower bounds characterizing the power-law decay of solution as $t\to \infty$ are proved. The uniqueness of the solution is proved under certain additional assumptions.
Bibliography: 29 titles.

Keywords: parabolic equation with double nonlinearity, $N$-functions, existence of a solution, estimate for the decay rate of a solution.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-07920-a
This work was supported by the Russian Foundation for Basic Research (grant no. 15-01-07920-a).


DOI: https://doi.org/10.4213/sm8484

Full text: PDF file (785 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:1, 1–40

Bibliographic databases:

Document Type: Article
UDC: 517.954+517.956.45+517.958:531.72
MSC: Primary 35K20; Secondary 35K55
Received: 01.02.2015 and 22.06.2015

Citation: È. R. Andriyanova, F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Mat. Sb., 207:1 (2016), 3–44; Sb. Math., 207:1 (2016), 1–40

Citation in format AMSBIB
\Bibitem{AndMuk16}
\by \`E.~R.~Andriyanova, F.~Kh.~Mukminov
\paper Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 1
\pages 3--44
\mathnet{http://mi.mathnet.ru/msb8484}
\crossref{https://doi.org/10.4213/sm8484}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3462724}
\zmath{https://zbmath.org/?q=an:1339.35139}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207....1A}
\elib{http://elibrary.ru/item.asp?id=25707800}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 1
\pages 1--40
\crossref{https://doi.org/10.1070/SM8484}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000371797300001}
\elib{http://elibrary.ru/item.asp?id=27003383}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963537230}


Linking options:
  • http://mi.mathnet.ru/eng/msb8484
  • https://doi.org/10.4213/sm8484
  • http://mi.mathnet.ru/eng/msb/v207/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. V. F. Vildanova, “Uravnenie agregatsii s anizotropnoi diffuziei”, Tr. IMM UrO RAN, 23, no. 3, 2017, 58–73  mathnet  crossref  elib
    3. V. F. Vil'danova, “Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form”, Sb. Math., 209:2 (2018), 206–221  mathnet  crossref  crossref  adsnasa  isi  elib
    4. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  adsnasa  isi  elib
    5. A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  isi  elib  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:370
    Full text:11
    References:49
    First page:56

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019