RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2016, Volume 207, Number 4, Pages 143–172 (Mi msb8549)  

Approximating the trajectory attractor of the 3D Navier-Stokes system using various $\alpha$-models of fluid dynamics

V. V. Chepyzhovab

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b National Research University "Higher School of Economics" (HSE), Moscow

Abstract: We study the limit as $\alpha\to 0{+}$ of the long-time dynamics for various approximate $\alpha$-models of a viscous incompressible fluid and their connection with the trajectory attractor of the exact 3D Navier-Stokes system. The $\alpha$-models under consideration are divided into two classes depending on the orthogonality properties of the nonlinear terms of the equations generating every particular $\alpha$-model. We show that the attractors of $\alpha$-models of class I have stronger properties of attraction for their trajectories than the attractors of $\alpha$-models of class II. We prove that for both classes the bounded families of trajectories of the $\alpha$-models considered here converge in the corresponding weak topology to the trajectory attractor $\mathfrak A_0$ of the exact 3D Navier-Stokes system as time $t$ tends to infinity. Furthermore, we establish that the trajectory attractor $\mathfrak A_\alpha$ of every $\alpha$-model converges in the same topology to the attractor $\mathfrak A_0$ as $\alpha\to 0{+}$. We construct the minimal limits $\mathfrak A_{\min}\subseteq\mathfrak A_0$ of the trajectory attractors $\mathfrak A_\alpha$ for all $\alpha$-models as $\alpha\to 0{+}$. We prove that every such set $\mathfrak A_{\min}$ is a compact connected component of the trajectory attractor $\mathfrak A_0$, and all the $\mathfrak A_{\min}$ are strictly invariant under the action of the translation semigroup.
Bibliography: 39 titles.

Keywords: 3D Navier-Stokes system, $\alpha$-models of fluid dynamics, trajectory attractor.

Funding Agency Grant Number
Russian Science Foundation 14-50-00150
This research was supported by the Russian Science Foundation (project no. 14-50-00150).


DOI: https://doi.org/10.4213/sm8549

Full text: PDF file (710 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:4, 610–638

Bibliographic databases:

Document Type: Article
UDC: 517.958
MSC: Primary 35Q30; Secondary 35B41, 76D05
Received: 27.05.2015 and 04.12.2015

Citation: V. V. Chepyzhov, “Approximating the trajectory attractor of the 3D Navier-Stokes system using various $\alpha$-models of fluid dynamics”, Mat. Sb., 207:4 (2016), 143–172; Sb. Math., 207:4 (2016), 610–638

Citation in format AMSBIB
\Bibitem{Che16}
\by V.~V.~Chepyzhov
\paper Approximating the trajectory attractor of the 3D Navier-Stokes system using various $\alpha$-models of fluid dynamics
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 4
\pages 143--172
\mathnet{http://mi.mathnet.ru/msb8549}
\crossref{https://doi.org/10.4213/sm8549}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507495}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..610C}
\elib{http://elibrary.ru/item.asp?id=25707829}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 4
\pages 610--638
\crossref{https://doi.org/10.1070/SM8549}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000378483100007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976430871}


Linking options:
  • http://mi.mathnet.ru/eng/msb8549
  • https://doi.org/10.4213/sm8549
  • http://mi.mathnet.ru/eng/msb/v207/i4/p143

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:265
    Full text:6
    References:36
    First page:48

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019