RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2016, Volume 207, Number 5, Pages 93–142 (Mi msb8561)  

This article is cited in 10 scientific papers (total in 10 papers)

Measures of correlations in infinite-dimensional quantum systems

M. E. Shirokov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Several important measures of correlations of the state of a finite-dimensional composite quantum system are defined as linear combinations of marginal entropies of this state. This paper is devoted to infinite-dimensional generalizations of such quantities and to an analysis of their properties.
We introduce the notion of faithful extension of a linear combination of marginal entropies and consider several concrete examples, the simplest of which are quantum mutual information and quantum conditional entropy. Then we show that quantum conditional mutual information can be defined uniquely as a lower semicontinuous function on the set of all states of a tripartite infinite-dimensional system possessing all the basic properties valid in finite dimensions. Infinite-dimensional generalizations of some other measures of correlations in multipartite quantum systems are also considered. Applications of the results to the theory of infinite-dimensional quantum channels and their capacities are considered. The existence of a Fawzi-Renner recovery channel reproducing marginal states for all tripartite states (including states with infinite marginal entropies) is shown.
Bibliography: 47 titles.

Keywords: von Neumann entropy, marginal entropy, quantum mutual information, quantum channel, entanglement-assisted capacity.

Funding Agency Grant Number
Russian Science Foundation 14-21-00162
The research was funded by the grant from the Russian Science Foundation (project no. 14-21-00162).


DOI: https://doi.org/10.4213/sm8561

Full text: PDF file (960 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:5, 724–768

Bibliographic databases:

UDC: 519.248.3
MSC: Primary 81P45; Secondary 46N50
Received: 22.06.2015 and 25.10.2015

Citation: M. E. Shirokov, “Measures of correlations in infinite-dimensional quantum systems”, Mat. Sb., 207:5 (2016), 93–142; Sb. Math., 207:5 (2016), 724–768

Citation in format AMSBIB
\Bibitem{Shi16}
\by M.~E.~Shirokov
\paper Measures of correlations in infinite-dimensional quantum systems
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 5
\pages 93--142
\mathnet{http://mi.mathnet.ru/msb8561}
\crossref{https://doi.org/10.4213/sm8561}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507500}
\zmath{https://zbmath.org/?q=an:06629507}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..724S}
\elib{http://elibrary.ru/item.asp?id=26414397}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 5
\pages 724--768
\crossref{https://doi.org/10.1070/SM8561}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380765400005}
\elib{http://elibrary.ru/item.asp?id=27106474}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979702700}


Linking options:
  • http://mi.mathnet.ru/eng/msb8561
  • https://doi.org/10.4213/sm8561
  • http://mi.mathnet.ru/eng/msb/v207/i5/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. E. Shirokov, A. S. Holevo, “On lower semicontinuity of the entropic disturbance and its applications in quantum information theory”, Izv. Math., 81:5 (2017), 1044–1060  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. M. E. Shirokov, “Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity, and for capacities of quantum channels”, J. Math. Phys., 58:10 (2017), 102202, 22 pp.  crossref  mathscinet  zmath  isi  scopus
    3. M. E. Shirokov, “Adaptation of the Alicki-Fannes-Winter method for the set of states with bounded energy and its use”, Rep. Math. Phys., 81:1 (2018), 81–104  crossref  mathscinet  isi
    4. K. Sharma, M. M. Wilde, S. Adhikari, M. Takeoka, “Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels”, New J. Phys., 20 (2018), 063025  crossref  isi  scopus
    5. N. Davis, M. E. Shirokov, M. M. Wilde, “Energy-constrained two-way assisted private and quantum capacities of quantum channels”, Phys. Rev. A, 97:6 (2018), 062310  crossref  isi  scopus
    6. M. Junge, R. Renner, D. Sutter, M. M. Wilde, A. Winter, “Universal recovery maps and approximate sufficiency of quantum relative entropy”, Ann. Henri Poincaré, 19:10 (2018), 2955–2978  crossref  mathscinet  zmath  isi  scopus
    7. M. E. Shirokov, “Uniform finite-dimensional approximation of basic capacities of energy-constrained channels”, Quantum Inf. Process., 17:12 (2018), 322, 29 pp.  crossref  mathscinet  isi  scopus
    8. I. Ya. Aref'eva, I. V. Volovich, O. V. Inozemtsev, “Evolution of holographic entropy quantities for composite quantum systems”, Theoret. and Math. Phys., 197:3 (2018), 1838–1844  mathnet  crossref  crossref  adsnasa  isi  elib
    9. M. M. Wilde, H. Qi, “Energy-constrained private and quantum capacities of quantum channels”, IEEE Trans. Inform. Theory, 64:12 (2018), 7802–7827  crossref  mathscinet  zmath  isi
    10. M. E. Shirokov, “Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy”, J. Phys. A, 52:1 (2019), 014001, 31 pp.  crossref  mathscinet  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:329
    Full text:17
    References:24
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019