RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2016, Volume 207, Number 9, Pages 144–160 (Mi msb8610)  

This article is cited in 3 scientific papers (total in 3 papers)

Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots

J. Hamab, J. Leeb

a Seoul National University, Republic of Korea (South)
b Hongik University, Seoul, Republic of Korea (South)

Abstract: We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the $A$-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the $A$-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope $-4n+2$ turns out to be $2$.
Bibliography: 39 titles.

Keywords: Chern-Simons invariant, twist knot, orbifold, $A$-polynomial, edge polynomial.

DOI: https://doi.org/10.4213/sm8610

Full text: PDF file (570 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:9, 1319–1334

Bibliographic databases:

Document Type: Article
UDC: 515.162
MSC: 57M25, 51M10, 57M27, 57M50
Received: 03.10.2015 and 28.01.2016

Citation: J. Ham, J. Lee, “Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots”, Mat. Sb., 207:9 (2016), 144–160; Sb. Math., 207:9 (2016), 1319–1334

Citation in format AMSBIB
\Bibitem{HamLee16}
\by J.~Ham, J.~Lee
\paper Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 9
\pages 144--160
\mathnet{http://mi.mathnet.ru/msb8610}
\crossref{https://doi.org/10.4213/sm8610}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588995}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1319H}
\elib{http://elibrary.ru/item.asp?id=26604195}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 9
\pages 1319--1334
\crossref{https://doi.org/10.1070/SM8610}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000391848300006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84995666032}


Linking options:
  • http://mi.mathnet.ru/eng/msb8610
  • https://doi.org/10.4213/sm8610
  • http://mi.mathnet.ru/eng/msb/v207/i9/p144

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ji-Young Ham, J. Lee, A. Mednykh, A. Rasskazov, “An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds”, Sib. elektron. matem. izv., 13 (2016), 1017–1025  mathnet  crossref  mathscinet  zmath  isi  scopus
    2. J.-Y. Ham, J. Lee, “Explicit formulae for Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation $C(2n,3)$”, Lett. Math. Phys., 107:3 (2017), 427–437  crossref  mathscinet  zmath  isi  scopus
    3. J.-Y. Ham, J. Lee, A. Mednykh, A. Rasskazov, “On the volume and Chern–Simons invariant for 2-bridge knot orbifolds”, J. Knot Theory Ramifications, 26:12 (2017), 1750082, 22 pp.  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:206
    References:19
    First page:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019