RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2016, Volume 207, Number 12, Pages 90–109 (Mi msb8616)  

Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient

D. V. Kostin

Voronezh State University

Abstract: Methods are given for the approximate calculation of a branch of a resonance oscillation when it bifurcates from a stationary point and for optimizing this branch with respect to the nonsymmetry coefficient, which is defined as the ratio between the largest and the smallest values of the amplitude. It is shown that the optimal values of the base amplitudes are the coefficients of the corresponding Fejér series. The largest value of the nonsymmetry coefficient is calculated exactly.
Bibliography: 18 titles.

Keywords: smooth functional, periodic extremal, bifurcation, nonsymmetry coefficient, Fejér trigonometric series, Lyapunov-Schmidt reduction.

DOI: https://doi.org/10.4213/sm8616

Full text: PDF file (599 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:12, 1709–1728

Bibliographic databases:

UDC: 517.538
MSC: 34A37, 34C23, 34C25
Received: 09.10.2015 and 26.05.2016

Citation: D. V. Kostin, “Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient”, Mat. Sb., 207:12 (2016), 90–109; Sb. Math., 207:12 (2016), 1709–1728

Citation in format AMSBIB
\Bibitem{Kos16}
\by D.~V.~Kostin
\paper Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 12
\pages 90--109
\mathnet{http://mi.mathnet.ru/msb8616}
\crossref{https://doi.org/10.4213/sm8616}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588987}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1709K}
\elib{http://elibrary.ru/item.asp?id=27485044}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 12
\pages 1709--1728
\crossref{https://doi.org/10.1070/SM8616}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000394542200005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014201194}


Linking options:
  • http://mi.mathnet.ru/eng/msb8616
  • https://doi.org/10.4213/sm8616
  • http://mi.mathnet.ru/eng/msb/v207/i12/p90

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:176
    References:30
    First page:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019