Matematicheskii Sbornik
General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mat. Sb.:

Personal entry:
Save password
Forgotten password?

Mat. Sb., 2017, Volume 208, Number 3, Pages 4–27 (Mi msb8632)  

This article is cited in 10 scientific papers (total in 10 papers)

Convergence of ray sequences of Frobenius-Padé approximants

A. I. Aptekareva*, A. I. Bogolyubskiib, M. Yattselevc

a Federal Research Centre Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Russian National Research Medical University named after N. I. Pirogov, Moscow
c Department of Mathematical Sciences, Indiana University – Purdue University Indianapolis, Indianapolis, IN, USA

Abstract: Let $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences $n/(n+m+1)\to c>0$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions.
Bibliography: 30 titles.

Keywords: Frobenius-Padé approximants, linear Padé-Chebyshev approximants, Padé approximants of orthogonal expansions, orthogonality, Markov-type functions, Riemann-Hilbert matrix problem.

Funding Agency Grant Number
Russian Science Foundation 14-21-00025
Russian Foundation for Basic Research 14-01-00604-a
Simons Foundation #354538
A. I. Aptekarev's research was supported by the Russian Science Foundation (grant no. 14-21-00025). A. I. Bogolyubskii's research was supported by the Russian Foundation for Basic Research (grant nos. 14-01-00604_а and 17-01-00614_a). M. L. Yattselev's research was supported by the Simons Foundation (grant #354538).

* Author to whom correspondence should be addressed


Full text: PDF file (1155 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2017, 208:3, 313–334

Bibliographic databases:

UDC: 517.53
MSC: 41A20, 41A21
Received: 09.11.2015 and 26.09.2016

Citation: A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, “Convergence of ray sequences of Frobenius-Padé approximants”, Mat. Sb., 208:3 (2017), 4–27; Sb. Math., 208:3 (2017), 313–334

Citation in format AMSBIB
\by A.~I.~Aptekarev, A.~I.~Bogolyubskii, M.~Yattselev
\paper Convergence of ray sequences of Frobenius-Pad\'e approximants
\jour Mat. Sb.
\yr 2017
\vol 208
\issue 3
\pages 4--27
\jour Sb. Math.
\yr 2017
\vol 208
\issue 3
\pages 313--334

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Lysov, “Silnaya asimptotika approksimatsii Ermita–Pade dlya sistemy Nikishina s vesami Yakobi”, Preprinty IPM im. M. V. Keldysha, 2017, 085, 35 pp.  mathnet  crossref
    2. S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials for a complex Nikishin system”, Russian Math. Surveys, 73:2 (2018), 363–365  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. G. López Lagomasino, W. Van Assche, “Riemann-Hilbert analysis for a Nikishin system”, Sb. Math., 209:7 (2018), 1019–1050  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. A. P. Starovoitov, “Hermite–Padé approximants of the Mittag-Leffler functions”, Proc. Steklov Inst. Math., 301 (2018), 228–244  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. S. P. Suetin, “On an Example of the Nikishin System”, Math. Notes, 104:6 (2018), 905–914  mathnet  crossref  crossref  mathscinet  isi  elib
    7. S. P. Suetin, “Existence of a three-sheeted Nutall surface for a certain class of infinite-valued analytic functions”, Russian Math. Surveys, 74:2 (2019), 363–365  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. S. P. Suetin, “Equivalence of a Scalar and a Vector Equilibrium Problem for a Pair of Functions Forming a Nikishin System”, Math. Notes, 106:6 (2019), 970–979  mathnet  crossref  crossref  mathscinet  isi  elib
    9. N. R. Ikonomov, S. P. Suetin, “Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite–Padé Polynomials of Type II”, Proc. Steklov Inst. Math., 309 (2020), 159–182  mathnet  crossref  crossref  mathscinet  isi  elib
    10. I A. Bogolyubskii , V. G. Lysov, “Constructive solution of one vector equilibrium problem”, Dokl. Math., 101:2 (2020), 90–92  crossref  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:484
    Full text:42
    First page:28

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021