RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2016, Volume 207, Number 12, Pages 54–72 (Mi msb8652)  

This article is cited in 5 scientific papers (total in 5 papers)

Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6

A. V. Grishina, S. V. Pchelintsevb

a Moscow State Pedagogical University
b Financial University under the Government of the Russian Federation, Moscow

Abstract: We study the centre of a relatively free associative algebra $F^{(n)}$ with the identity $[x_1,…,x_n]=0$ of Lie nilpotency of degree $n=5,6$ over a field of characteristic 0. It is proved that the core $Z^*(F^{(5)})$ of the algebra $F^{(5)}$ (the sum of all ideals of $F^{(5)}$ contained in its centre) is generated as a $\mathrm T$-ideal by the weak Hall polynomial $[[x,y]^{2},y]$. It is also proved that every proper central polynomial of $F^{(5)}$ is contained in the sum of $Z^*(F^{(5)})$ and the $\mathrm T$-space generated by $[[x,y]^{2}, z]$ and the commutator $[x_1,…, x_4]$ of degree 4. This implies that the centre of $F^{(5)}$ is contained in the $\mathrm T$-ideal generated by the commutator of degree 4.
Similar results are obtained for $F^{(6)}$; in particular, it is proved that the core $Z^{*}(F^{(6)})$ is generated as a $\mathrm T$-ideal by the commutator of degree 5.
Bibliography: 15 titles.

Keywords: identities of Lie nilpotency of degrees 5 and 6, centre, core, proper polynomial, extended Grassmann algebra, superalgebra, Grassmann hull, Hall polynomials.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00756-a
This research was supported by the Russian Foundation for Basic Research (grant no. 16-01-00756-a).

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/sm8652

Full text: PDF file (566 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:12, 1674–1692

Bibliographic databases:

UDC: 512.552.4
MSC: Primary 16R10; Secondary 16R40
Received: 21.12.2015

Citation: A. V. Grishin, S. V. Pchelintsev, “Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6”, Mat. Sb., 207:12 (2016), 54–72; Sb. Math., 207:12 (2016), 1674–1692

Citation in format AMSBIB
\Bibitem{GriPch16}
\by A.~V.~Grishin, S.~V.~Pchelintsev
\paper Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and~6
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 12
\pages 54--72
\mathnet{http://mi.mathnet.ru/msb8652}
\crossref{https://doi.org/10.4213/sm8652}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588985}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1674G}
\elib{http://elibrary.ru/item.asp?id=27485040}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 12
\pages 1674--1692
\crossref{https://doi.org/10.1070/SM8652}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000394542200003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014208385}


Linking options:
  • http://mi.mathnet.ru/eng/msb8652
  • https://doi.org/10.4213/sm8652
  • http://mi.mathnet.ru/eng/msb/v207/i12/p54

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Grishin, “On the additive structure and asymptotics of codimensions $c_n$ in the algebra $F^{(5)}$”, J. Math. Sci., 233:5 (2018), 666–674  mathnet  crossref  elib
    2. S. V. Pchelintsev, “Identities of metabelian alternative algebras”, Siberian Math. J., 58:4 (2017), 693–710  mathnet  crossref  crossref  isi  elib  elib
    3. S. V. Pchelintsev, “Identities of the model algebra of multiplicity 2”, Siberian Math. J., 59:6 (2018), 1105–1124  mathnet  crossref  crossref  isi
    4. A. V. Grishin, “On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4”, Sb. Math., 210:2 (2019), 234–244  mathnet  crossref  crossref  adsnasa  isi  elib
    5. Murakami L.S.I., Pchelintsev S.V., Shashkov O.V., “Finite-Dimensional Right Alternative Superalgebras With Semisimple Strongly Alternative Even Part”, J. Algebra, 528 (2019), 150–176  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:234
    Full text:9
    References:28
    First page:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020