RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2018, Volume 209, Number 2, Pages 47–65 (Mi msb8687)  

Continued fractions with limit periodic coefficients

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction.
Bibliography: 26 titles.

Keywords: continued fractions, Hankel determinants, meromorphic extension, transfinite diameter.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant no. 14-50-00005.


DOI: https://doi.org/10.4213/sm8687

Full text: PDF file (655 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2018, 209:2, 187–205

Bibliographic databases:

Document Type: Article
UDC: 517.53
MSC: 30A14, 30B70
Received: 29.02.2016 and 27.06.2017

Citation: V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Mat. Sb., 209:2 (2018), 47–65; Sb. Math., 209:2 (2018), 187–205

Citation in format AMSBIB
\Bibitem{Bus18}
\by V.~I.~Buslaev
\paper Continued fractions with limit periodic coefficients
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 2
\pages 47--65
\mathnet{http://mi.mathnet.ru/msb8687}
\crossref{https://doi.org/10.4213/sm8687}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..187B}
\elib{http://elibrary.ru/item.asp?id=32428132}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 2
\pages 187--205
\crossref{https://doi.org/10.1070/SM8687}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000431983100003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036648124}


Linking options:
  • http://mi.mathnet.ru/eng/msb8687
  • https://doi.org/10.4213/sm8687
  • http://mi.mathnet.ru/eng/msb/v209/i2/p47

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:200
    References:15
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018