Matematicheskii Sbornik
General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mat. Sb.:

Personal entry:
Save password
Forgotten password?

Mat. Sb., 2016, Volume 207, Number 10, Pages 28–55 (Mi msb8698)  

This article is cited in 14 scientific papers (total in 14 papers)

$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation

A. K. Gushchin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The paper is concerned with the properties of the solution to a Dirichlet problem for a homogeneous second-order elliptic equation with $L_p$-boundary function, $p>1$. The same conditions are imposed on the coefficients of the equation and the boundary of the bounded domain as were used to establish the solvability of this problem. The $L_p$-norm of the nontangential maximal function is estimated in terms of the $L_p$-norm of the boundary value. This result depends on a new estimate, proved below, for the nontangential maximal function in terms of an analogue of the Lusin area integral.
Bibliography: 31 titles.

Keywords: elliptic equation, Dirichlet problem, nontangential maximal function.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation (project no. 14-50-00005).


Full text: PDF file (919 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2016, 207:10, 1384–1409

Bibliographic databases:

UDC: 517.956.223
MSC: Primary 35J25; Secondary 35J67
Received: 11.03.2016 and 21.06.2016

Citation: A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Mat. Sb., 207:10 (2016), 28–55; Sb. Math., 207:10 (2016), 1384–1409

Citation in format AMSBIB
\by A.~K.~Gushchin
\paper $L_p$-estimates for the nontangential maximal function of the solution to a~second-order elliptic equation
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 10
\pages 28--55
\jour Sb. Math.
\yr 2016
\vol 207
\issue 10
\pages 1384--1409

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. V. V. Zharinov, “Lie–Poisson structures over differential algebras”, Theoret. and Math. Phys., 192:3 (2017), 1337–1349  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. V. V. Zharinov, “Analysis in algebras and modules”, Proc. Steklov Inst. Math., 301 (2018), 98–108  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    9. A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for $\mathbb{SO}(3)$ connection”, Phys. Part. Nuclei, 49:5 (2018), 890–893  crossref  isi  scopus
    11. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    12. A. K. Gushchin, “On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65  mathnet  crossref  crossref  mathscinet  isi  elib
    13. V. V. Zharinov, “Analysis in Noncommutative Algebras and Modules”, Proc. Steklov Inst. Math., 306 (2019), 90–101  mathnet  crossref  crossref  mathscinet  isi  elib
    14. A. K. Gushchin, “Extensions of the space of continuous functions and embedding theorems”, Sb. Math., 211:11 (2020), 1551–1567  mathnet  crossref  crossref  mathscinet  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:437
    Full text:44
    First page:34

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021