RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2017, Volume 208, Number 3, Pages 28–53 (Mi msb8732)  

This article is cited in 2 scientific papers (total in 2 papers)

Symmetric moment problems and a conjecture of Valent

Ch. Berga, R. Szwarcb

a Department of Mathematical Sciences, University of Copenhagen, Denmark
b Institute of Mathematics, University of Wrocław, Poland

Abstract: In 1998 Valent made conjectures about the order and type of certain indeterminate Stieltjes moment problems associated with birth and death processes which have polynomial birth and death rates of degree $p\ge 3$. Romanov recently proved that the order is $1/p$ as conjectured. We prove that the type with respect to the order is related to certain multi-zeta values and that this type belongs to the interval
$$ [\frac{\pi}{p\sin(\pi/p)}, \frac{\pi}{p\sin(\pi/p)\cos(\pi/p)}], $$
which also contains the conjectured value. This proves that the conjecture about type is asymptotically correct as $p\to\infty$.
The main idea is to obtain estimates for order and type of symmetric indeterminate Hamburger moment problems when the orthonormal polynomials $P_n$ and those of the second kind $Q_n$ satisfy $P_{2n}^2(0)\sim c_1n^{-1/\beta}$ and $Q_{2n-1}^2(0)\sim c_2 n^{-1/\alpha}$, where $0<\alpha,\beta<1$ may be different, and $c_1$ and $c_2$ are positive constants. In this case the order of the moment problem is majorized by the harmonic mean of $\alpha$ and $\beta$. Here $\alpha_n\sim \beta_n$ means that $\alpha_n/\beta_n\to 1$. This also leads to a new proof of Romanov's Theorem that the order is $1/p$.
Bibliography: 19 titles.

Keywords: indeterminate moment problem, birth and death process with polynomial rates, multi-zeta values.

Funding Agency Grant Number
National Science Centre (Narodowe Centrum Nauki) 2013/11/B/ST1/02308
R. Szwarc's research was supported by the National Science Centre (NCN), Poland (grant no. 2013/11/B/ST1/02308).

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/sm8732

Full text: PDF file (974 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2017, 208:3, 335–359

Bibliographic databases:

UDC: 517.518.88+511.331+519.218.2
MSC: Primary 44A60; Secondary 11M32, 30D15, 60J80
Received: 13.05.2016 and 19.09.2016

Citation: Ch. Berg, R. Szwarc, “Symmetric moment problems and a conjecture of Valent”, Mat. Sb., 208:3 (2017), 28–53; Sb. Math., 208:3 (2017), 335–359

Citation in format AMSBIB
\Bibitem{BerSzw17}
\by Ch.~Berg, R.~Szwarc
\paper Symmetric moment problems and a~conjecture of Valent
\jour Mat. Sb.
\yr 2017
\vol 208
\issue 3
\pages 28--53
\mathnet{http://mi.mathnet.ru/msb8732}
\crossref{https://doi.org/10.4213/sm8732}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3629075}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..335B}
\elib{https://elibrary.ru/item.asp?id=28405171}
\transl
\jour Sb. Math.
\yr 2017
\vol 208
\issue 3
\pages 335--359
\crossref{https://doi.org/10.1070/SM8732}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000401851300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020084967}


Linking options:
  • http://mi.mathnet.ru/eng/msb8732
  • https://doi.org/10.4213/sm8732
  • http://mi.mathnet.ru/eng/msb/v208/i3/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Christian Berg, Ryszard Szwarc, “Inverse of Infinite Hankel Moment Matrices”, SIGMA, 14 (2018), 109, 48 pp.  mathnet  crossref
    2. I. Bochkov, “Polynomial birth-death processes and the second conjecture of Valent”, C. R. Math. Acad. Sci. Paris, 357:3 (2019), 247–251  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:344
    Full text:20
    References:39
    First page:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021