RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2017, Volume 208, Number 12, Pages 144–158 (Mi msb8733)  

This article is cited in 2 scientific papers (total in 2 papers)

Some remarks on sets with small quotient set

I. D. Shkredov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: We prove that for any finite set $A\subset \mathbb{R}$ with $|A/A| \ll |A|$ we have $|A-A| \gg |A|^{5/3 - o(1)}$. We also show that for such sets $|A+A+A| \gg |A|^{2-o(1)}$.
Bibliography: 22 titles.

Keywords: additive combinatorics, sum-product phenomenon, Erdős-Szemerédi conjecture.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant no. 14-50-00005.


DOI: https://doi.org/10.4213/sm8733

Full text: PDF file (920 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2017, 208:12, 1854–1868

Bibliographic databases:

Document Type: Article
UDC: 511.218
MSC: 11B75
Received: 16.05.2016 and 16.09.2016

Citation: I. D. Shkredov, “Some remarks on sets with small quotient set”, Mat. Sb., 208:12 (2017), 144–158; Sb. Math., 208:12 (2017), 1854–1868

Citation in format AMSBIB
\Bibitem{Shk17}
\by I.~D.~Shkredov
\paper Some remarks on sets with small quotient set
\jour Mat. Sb.
\yr 2017
\vol 208
\issue 12
\pages 144--158
\mathnet{http://mi.mathnet.ru/msb8733}
\crossref{https://doi.org/10.4213/sm8733}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3733364}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1854S}
\elib{http://elibrary.ru/item.asp?id=30738019}
\transl
\jour Sb. Math.
\yr 2017
\vol 208
\issue 12
\pages 1854--1868
\crossref{https://doi.org/10.1070/SM8733}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000425457000006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042641029}


Linking options:
  • http://mi.mathnet.ru/eng/msb8733
  • https://doi.org/10.4213/sm8733
  • http://mi.mathnet.ru/eng/msb/v208/i12/p144

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. Murphy, O. Roche-Newton, I. D. Shkredov, “Variations on the sum-product problem II”, SIAM Discret. Math., 31:3 (2017), 1878–1894  mathnet  crossref  mathscinet  zmath  isi  scopus
    2. A. Iosevich, O. Roche-Newton, M. Rudnev, “On discrete values of bilinear forms”, Sb. Math., 209:10 (2018), 1482–1497  mathnet  crossref  crossref  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:221
    References:7
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019