RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2018, Volume 209, Number 2, Pages 138–152 (Mi msb8839)  

This article is cited in 1 scientific paper (total in 1 paper)

Automorphisms of certain affine complements in projective space

A. V. Pukhlikov

University of Liverpool, UK

Abstract: We prove that every biregular automorphism of the affine algebraic variety ${\mathbb P}^M\setminus S$, $M\geqslant 3$, where $S\subset {\mathbb P}^M$ is a hypersurface of degree $m\geqslant M+1$ with a unique singular point of multiplicity $(m-1)$, resolved by one blow up, is a restriction of some automorphism of the projective space ${\mathbb P}^M$ preserving the hypersurface $S$; in particular, for a general hypersurface $S$ the group $\operatorname{Aut}({\mathbb P}^M\setminus S)$ is trivial.
Bibliography: 24 titles.

Keywords: affine complement, birational map, maximal singularity.

DOI: https://doi.org/10.4213/sm8839

Full text: PDF file (596 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2018, 209:2, 276–289

Bibliographic databases:

UDC: 512.76
MSC: 14J50, 14R20
Received: 13.10.2016 and 03.02.2017

Citation: A. V. Pukhlikov, “Automorphisms of certain affine complements in projective space”, Mat. Sb., 209:2 (2018), 138–152; Sb. Math., 209:2 (2018), 276–289

Citation in format AMSBIB
\Bibitem{Puk18}
\by A.~V.~Pukhlikov
\paper Automorphisms of certain affine complements in projective space
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 2
\pages 138--152
\mathnet{http://mi.mathnet.ru/msb8839}
\crossref{https://doi.org/10.4213/sm8839}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..276P}
\elib{http://elibrary.ru/item.asp?id=32428137}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 2
\pages 276--289
\crossref{https://doi.org/10.1070/SM8839}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000431983100008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046542259}


Linking options:
  • http://mi.mathnet.ru/eng/msb8839
  • https://doi.org/10.4213/sm8839
  • http://mi.mathnet.ru/eng/msb/v209/i2/p138

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Cheltsov, A. Dubouloz, J. Park, “Super-rigid affine Fano varieties”, Compos. Math., 154:11 (2018), 2462–2484  crossref  mathscinet  zmath  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:167
    References:9
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019