RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2019, Volume 210, Number 2, Pages 75–86 (Mi msb9034)  

This article is cited in 1 scientific paper (total in 1 paper)

On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4

A. V. Grishin

Moscow State Pedagogical University, Moscow, Russia

Abstract: This work is concerned with the concept of a graded subspace of the polylinear part of a relatively free algebra and with the measure of inclusion of such a subspace. Other asymptotic characteristics are also considered. In the case of relatively free algebras with the identity of Lie nilpotency of degree 3 and 4, the measure of inclusion is computed for many subspaces; in particular, for the centre and the $T$-space generated by the commutator this measure is $1/2$.
Bibliography: 17 titles.

Keywords: identity of Lie nilpotency, Frobenius relations, graded subspace, measure of inclusion, rate of growth.

DOI: https://doi.org/10.4213/sm9034

Full text: PDF file (588 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2019, 210:2, 234–244

Bibliographic databases:

UDC: 517.538
MSC: Primary 16R10; Secondary 16R40
Received: 04.11.2017 and 11.04.2018

Citation: A. V. Grishin, “On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4”, Mat. Sb., 210:2 (2019), 75–86; Sb. Math., 210:2 (2019), 234–244

Citation in format AMSBIB
\Bibitem{Gri19}
\by A.~V.~Grishin
\paper On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree~3 or~4
\jour Mat. Sb.
\yr 2019
\vol 210
\issue 2
\pages 75--86
\mathnet{http://mi.mathnet.ru/msb9034}
\crossref{https://doi.org/10.4213/sm9034}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..234G}
\elib{http://elibrary.ru/item.asp?id=37089808}
\transl
\jour Sb. Math.
\yr 2019
\vol 210
\issue 2
\pages 234--244
\crossref{https://doi.org/10.1070/SM9034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000465078600003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067234471}


Linking options:
  • http://mi.mathnet.ru/eng/msb9034
  • https://doi.org/10.4213/sm9034
  • http://mi.mathnet.ru/eng/msb/v210/i2/p75

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Grishin, “Asymptotic Behavior in Lie Nilpotent Relatively Free Algebras and Extended Grassmann Algebras”, Math. Notes, 107:6 (2020), 903–908  mathnet  crossref  crossref  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:175
    References:17
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020