RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2019, Volume 210, Number 4, Pages 103–127 (Mi msb9068)  

Linear collective collocation approximation for parametric and stochastic elliptic PDEs

Dinh Dũng

Information Technology Institute, Vietnam National University, Hanoi, Vietnam

Abstract: Consider the parametric elliptic problem
$$ -\operatorname{div}(a(y)(x)\nabla u(y)(x))=f(x),\qquad x\in D,\quad y\in\mathbb I^\infty,\quad u|_{\partial D}=0, $$
where $D\subset\mathbb R^m$ is a bounded Lipschitz domain, $\mathbb I^\infty:=[-1,1]^\infty$, $f\in L_2(D)$, and the diffusion coefficients $a$ satisfy the uniform ellipticity assumption and are affinely dependent on $y$. The parameter $y$ can be interpreted as either a deterministic or a random variable. A central question to be studied is as follows. Assume that there is a sequence of approximations with a certain error convergence rate in the energy norm of the space $V:=H^1_0(D)$ for the nonparametric problem $-\operatorname{div}(a(y_0)(x)\nabla u(y_0)(x))=f(x)$ at every point $y_0\in\mathbb I^\infty$. Then under what assumptions does this sequence induce a sequence of approximations with the same error convergence rate for the parametric elliptic problem in the norm of the Bochner spaces $L_\infty(\mathbb I^\infty,V)$? We have solved this question using linear collective collocation methods, based on Lagrange polynomial interpolation on the parametric domain $\mathbb I^\infty$. Under very mild conditions, we show that these approximation methods give the same error convergence rate as for the nonparametric elliptic problem. In this sense the curse of dimensionality is broken by linear methods.
Bibliography: 22 titles.

Keywords: high-dimensional problems, parametric and stochastic elliptic PDEs, linear collective collocation approximation, affine dependence of the diffusion coefficients.

Funding Agency Grant Number
National Foundation for Science and Technology Development Vietnam 102.01-2017.05
This work was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 102.01-2017.05.


DOI: https://doi.org/10.4213/sm9068

Full text: PDF file (717 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2019, 210:4, 565–588

Bibliographic databases:

UDC: 517.954+517.518
MSC: 41A10, 65N35, 65N30, 65N15, 65L10, 65D05, 65C30
Received: 19.01.2018 and 27.05.2018

Citation: Dinh Dũng, “Linear collective collocation approximation for parametric and stochastic elliptic PDEs”, Mat. Sb., 210:4 (2019), 103–127; Sb. Math., 210:4 (2019), 565–588

Citation in format AMSBIB
\Bibitem{Din19}
\by Dinh~D{\~ u}ng
\paper Linear collective collocation approximation for parametric and stochastic elliptic PDEs
\jour Mat. Sb.
\yr 2019
\vol 210
\issue 4
\pages 103--127
\mathnet{http://mi.mathnet.ru/msb9068}
\crossref{https://doi.org/10.4213/sm9068}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..565D}
\elib{http://elibrary.ru/item.asp?id=37180603}
\transl
\jour Sb. Math.
\yr 2019
\vol 210
\issue 4
\pages 565--588
\crossref{https://doi.org/10.1070/SM9068}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000471828000005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071077468}


Linking options:
  • http://mi.mathnet.ru/eng/msb9068
  • https://doi.org/10.4213/sm9068
  • http://mi.mathnet.ru/eng/msb/v210/i4/p103

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:91
    References:10
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020