RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2019, Volume 210, Number 10, Pages 17–36 (Mi msb9124)  

Some properties of embeddings of rearrangement invariant spaces

S. V. Astashkina, E. M. Semenovb

a Samara National Research University, Samara, Russia
b Voronezh State University, Voronezh, Russia

Abstract: Let $E$ and $F$ be rearrangement invariant spaces on $[0,1]$, and let $E\subset F$. This embedding is said to be strict if the functions in the unit ball of the space $E$ have absolutely equicontinuous norms in $F$. For the main classes of rearrangement invariant spaces necessary and sufficient conditions are obtained for an embedding to be strict, and also the relationships this concept has with other properties of embeddings are studied, especially the property of disjoint strict singularity. In the final part of the paper, a characterization of the property of strict embedding in terms of interpolation spaces is obtained.
Bibliography: 23 titles.

Keywords: strict embedding, rearrangement invariant (symmetric) space, Lorentz space, Marcinkiewicz space, (disjointly) strictly singular embedding.

Funding Agency Grant Number
Ministry of Science and Higher Education of the Russian Federation 1.470.2016/1.4
Russian Foundation for Basic Research 17-01-00138-а
18-01-00414-а
The work of S. V. Astashkin was carried out in the framework of the implementation of a State Assignment of the Ministry of Education and Science of the Russian Federation (project no. 1.470.2016/1.4) and was also supported by the Russian Foundation for Basic Research (grant no. 17-01-00138-a). The work of E. M. Semenov was supported by the Russian Foundation for Basic Research (grant nos. 17-01-00138-a and 18-01-00414-a).

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/sm9124

Full text: PDF file (716 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2019, 210:10, 1361–1379

Bibliographic databases:

UDC: 517.982.27
MSC: 46E30
Received: 12.04.2018 and 06.12.2018

Citation: S. V. Astashkin, E. M. Semenov, “Some properties of embeddings of rearrangement invariant spaces”, Mat. Sb., 210:10 (2019), 17–36; Sb. Math., 210:10 (2019), 1361–1379

Citation in format AMSBIB
\Bibitem{AstSem19}
\by S.~V.~Astashkin, E.~M.~Semenov
\paper Some properties of embeddings of rearrangement invariant spaces
\jour Mat. Sb.
\yr 2019
\vol 210
\issue 10
\pages 17--36
\mathnet{http://mi.mathnet.ru/msb9124}
\crossref{https://doi.org/10.4213/sm9124}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1361A}
\elib{http://elibrary.ru/item.asp?id=43275989}
\transl
\jour Sb. Math.
\yr 2019
\vol 210
\issue 10
\pages 1361--1379
\crossref{https://doi.org/10.1070/SM9124}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000510717100002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082498359}


Linking options:
  • http://mi.mathnet.ru/eng/msb9124
  • https://doi.org/10.4213/sm9124
  • http://mi.mathnet.ru/eng/msb/v210/i10/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:135
    References:12
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020