RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2019, Volume 210, Number 11, Pages 129–158 (Mi msb9160)  

‘Blinking’ and ‘gliding’ eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings

S. A. Nazarov

Faculty of Mathematics and Mechanics, St Petersburg State University, St Petersburg, Russia

Abstract: The spectrum of a two-dimensional problem in elasticity theory is investigated for a body $\Omega^h$ with a cuspidal sharpening with a short tip of length $h>0$ that is broken off. It is known that when the tip is in place, the spectrum of the problem for $\Omega^0$ has a continuous component $[\Lambda_\dagger,+\infty)$ with positive cut-off point $\Lambda_\dagger>0$. We show that each point $\Lambda>\Lambda_\dagger$ is a ‘blinking’ eigenvalue, that is, it is an actual eigenvalue of the problem in $\Omega^h$ ‘almost periodically’ in the scale of $|\ln h|$. Among families of eigenvalues $\Lambda^h_{m(h)}$, which continuously depend on $h$, we discover ‘gliding’ eigenvalues, which fall down along the real axis at a great rate, $O((\Lambda^h_{m(h)}-\Lambda_\dagger)h^{-1}|\ln h|^{-1})$, but then land softly on the threshold $\Lambda_\dagger$. This reveals a new way of forming the continuous spectrum of the problem for a cuspidal body $\Omega^0$ from the system of discrete spectra of the problems in the $\Omega^h$, $h>0$. In addition, there may be ‘hardly movable’ eigenvalues, which remain in a small neighbourhood of a fixed point for all small $h$, in contrast to ‘gliding’ eigenvalues.
Bibliography: 30 titles.

Keywords: blunted cuspidal sharpening, two-dimensional elastic isotropic body, discrete and continuous spectrum, asymptotic behaviour, ‘blinking’ and ‘gliding’ eigenfrequencies.

Funding Agency Grant Number
Russian Science Foundation 17-11-01003
This research was supported by the Russian Science Foundation under grant no. 17-11-01003.


DOI: https://doi.org/10.4213/sm9160

Full text: PDF file (893 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2019, 210:11, 1633–1662

Bibliographic databases:

UDC: 517.958:539.3(2)+517.956.227+517.956.8
MSC: Primary 35Q74; Secondary 35P05
Received: 13.08.2018

Citation: S. A. Nazarov, “‘Blinking’ and ‘gliding’ eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings”, Mat. Sb., 210:11 (2019), 129–158; Sb. Math., 210:11 (2019), 1633–1662

Citation in format AMSBIB
\Bibitem{Naz19}
\by S.~A.~Nazarov
\paper `Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings
\jour Mat. Sb.
\yr 2019
\vol 210
\issue 11
\pages 129--158
\mathnet{http://mi.mathnet.ru/msb9160}
\crossref{https://doi.org/10.4213/sm9160}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1633N}
\elib{http://elibrary.ru/item.asp?id=43257242}
\transl
\jour Sb. Math.
\yr 2019
\vol 210
\issue 11
\pages 1633--1662
\crossref{https://doi.org/10.1070/SM9160}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000508977400001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082403507}


Linking options:
  • http://mi.mathnet.ru/eng/msb9160
  • https://doi.org/10.4213/sm9160
  • http://mi.mathnet.ru/eng/msb/v210/i11/p129

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:130
    References:8
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020