RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2019, Volume 210, Number 11, Pages 58–75 (Mi msb9225)  

This article is cited in 1 scientific paper (total in 1 paper)

Schur's criterion for formal power series

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: A criterion for when a formal power series can be represented by a formal Schur continued fraction is stated. The proof proposed is based on a relationship, revealed here, between Hankel two-point determinants of a series and its Schur determinants.
Bibliography: 10 titles.

Keywords: continued fractions, Schur functions, Hankel determinants.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00764-а
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-01-00764-a).


DOI: https://doi.org/10.4213/sm9225

Full text: PDF file (622 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2019, 210:11, 1563–1580

Bibliographic databases:

UDC: 517.538.22
MSC: 30B10, 30B70
Received: 28.01.2019 and 17.06.2019

Citation: V. I. Buslaev, “Schur's criterion for formal power series”, Mat. Sb., 210:11 (2019), 58–75; Sb. Math., 210:11 (2019), 1563–1580

Citation in format AMSBIB
\Bibitem{Bus19}
\by V.~I.~Buslaev
\paper Schur's criterion for formal power series
\jour Mat. Sb.
\yr 2019
\vol 210
\issue 11
\pages 58--75
\mathnet{http://mi.mathnet.ru/msb9225}
\crossref{https://doi.org/10.4213/sm9225}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4036801}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1563B}
\elib{http://elibrary.ru/item.asp?id=43275920}
\transl
\jour Sb. Math.
\yr 2019
\vol 210
\issue 11
\pages 1563--1580
\crossref{https://doi.org/10.1070/SM9225}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000508558900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082480709}


Linking options:
  • http://mi.mathnet.ru/eng/msb9225
  • https://doi.org/10.4213/sm9225
  • http://mi.mathnet.ru/eng/msb/v210/i11/p58

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Buslaev, “Convergence of a Limit Periodic Schur Continued Fraction”, Math. Notes, 107:5 (2020), 671–682  mathnet  crossref  crossref  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:201
    References:9
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020