Matematicheskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2020, Volume 211, Number 5, Pages 78–97 (Mi msb9263)  

The statistical properties of 3D Klein polyhedra

A. A. Illarionov

Pacific National University, Khabarovsk, Russia

Abstract: Let $\Gamma$ be a rank-$s$ lattice in $\mathbb R^s$. The convex hulls of the nonzero lattice points lying in orthants are called the Klein polyhedra of $\Gamma$. This construction was introduced by Klein in 1895, in connection with generalizing the classical continued-fraction algorithm to the multidimensional case. Arnold stated a number of problems on the statistical and geometric properties of Klein polyhedra. In two dimensions the corresponding results follow from the theory of continued fractions. An asymptotic formula for the mean value of the $f$-vectors (the numbers of facets, edges and vertices) of 3D Klein polyhedra is derived. This mean value is taken over the Klein polyhedra of integer 3D lattices with determinants in $[1,R]$, where $R$ is an increasing parameter.
Bibliography: 27 titles.

Keywords: Klein polyhedra, multidimensional continued fractions, lattices.

Funding Agency Grant Number
Russian Science Foundation 18-41-05001
This work was supported by the Russian Science Foundation under grant no. 18-41-05001.


DOI: https://doi.org/10.4213/sm9263

Full text: PDF file (589 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2020, 211:5, 689–708

Bibliographic databases:

UDC: 511.36+511.9
MSC: Primary 11H06; Secondary 11J70
Received: 15.04.2019 and 05.07.2019

Citation: A. A. Illarionov, “The statistical properties of 3D Klein polyhedra”, Mat. Sb., 211:5 (2020), 78–97; Sb. Math., 211:5 (2020), 689–708

Citation in format AMSBIB
\Bibitem{Ill20}
\by A.~A.~Illarionov
\paper The statistical properties of 3D Klein polyhedra
\jour Mat. Sb.
\yr 2020
\vol 211
\issue 5
\pages 78--97
\mathnet{http://mi.mathnet.ru/msb9263}
\crossref{https://doi.org/10.4213/sm9263}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4090790}
\elib{https://elibrary.ru/item.asp?id=45266537}
\transl
\jour Sb. Math.
\yr 2020
\vol 211
\issue 5
\pages 689--708
\crossref{https://doi.org/10.1070/SM9263}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000552435400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091405819}


Linking options:
  • http://mi.mathnet.ru/eng/msb9263
  • https://doi.org/10.4213/sm9263
  • http://mi.mathnet.ru/eng/msb/v211/i5/p78

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:178
    References:11
    First page:7

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021