RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1994, Volume 185, Number 9, Pages 109–138 (Mi msb927)  

This article is cited in 26 scientific papers (total in 26 papers)

On rapidly convergent iterative methods with complete boundary-condition splitting for a multidimensional singularly perturbed system of Stokes type

B. V. Pal'tsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences

Abstract: This paper is an investigation of a group of iterative methods with complete boundary-condition splitting for solving the first boundary value problem for a system of Stokes type with a small parameter $\varepsilon>0$:
\begin{gather*} -\varepsilon ^2\Delta{\mathbf u}+{\mathbf u}+\operatorname{grad}p={\mathbf f}, \qquad \operatorname{div}{\mathbf u}=0\quad \text {in $\Omega $},
{\mathbf u}|_\Gamma ={\mathbf g}, \qquad \int _\Gamma ({\mathbf g},{\mathbf n}) ds=0, \end{gather*}
where $\mathbf{u}=(u^1(x),…,u^n(x))$ is the velocity vector, $p = p(x)$ is the pressure, $\mathbf{f}=(f^1(x),…,f^n(x))$ is the field of external forces, and $\mathbf{g}=(g^1(x),…,g^n(x))$ is a given value of the velocity vector on the boundary $\Gamma$ of a domain $\Omega$ in the $n$-dimensional Euclidean space $\mathbb{R}^n$.

Full text: PDF file (2263 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 83:1, 93–118

Bibliographic databases:

UDC: 517.946+532.516.5
MSC: Primary 35A35, 35Q30, 35B25, 35A40; Secondary 65N12, 76D07, 76M25
Received: 20.07.1993

Citation: B. V. Pal'tsev, “On rapidly convergent iterative methods with complete boundary-condition splitting for a multidimensional singularly perturbed system of Stokes type”, Mat. Sb., 185:9 (1994), 109–138; Russian Acad. Sci. Sb. Math., 83:1 (1995), 93–118

Citation in format AMSBIB
\Bibitem{Pal94}
\by B.~V.~Pal'tsev
\paper On rapidly convergent iterative methods with complete boundary-condition splitting for a~multidimensional singularly perturbed system of Stokes type
\jour Mat. Sb.
\yr 1994
\vol 185
\issue 9
\pages 109--138
\mathnet{http://mi.mathnet.ru/msb927}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1305758}
\zmath{https://zbmath.org/?q=an:0849.76011}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 1
\pages 93--118
\crossref{https://doi.org/10.1070/SM1995v083n01ABEH003582}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995TQ10000005}


Linking options:
  • http://mi.mathnet.ru/eng/msb927
  • http://mi.mathnet.ru/eng/msb/v185/i9/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. V. Pal'tsev, “The conditions for the convergence of iterative methods with complete splitting of the boundary conditions for the Stokes system in a sphere and a spherical layer”, Comput. Math. Math. Phys., 35:6 (1995), 745–767  mathnet  mathscinet  zmath  isi
    2. Mamedova I. Serebryakov V., “Parallel Programming of Boundary-Valued Problems for the Poisson and Helmholtz Equations by a Multigrid Algorithm”, Program. Comput. Softw., 21:5 (1995), 225–237  mathscinet  zmath  isi
    3. B. V. Pal'tsev, I. I. Chechel', “Algorithms based on bilinear finite elements for iterative methods with split boundary conditions for a Stokes-type system in a strip under the periodicity condition”, Comput. Math. Math. Phys., 37:7 (1997), 775–791  mathnet  mathscinet  zmath
    4. B. V. Pal'tsev, I. I. Chechel', “On some methods for enhancing the convergence speed for the higher harmonics of bilinear finite element implementations of iterative methods with boundary-condition splitting for a Stokes-type system”, Comput. Math. Math. Phys., 38:6 (1998), 916–929  mathnet  mathscinet  zmath
    5. B. V. Pal'tsev, I. I. Chechel', “Real properties of bilinear finite element implementations of methods with the splitting of boundary conditions for a Stokes-type system”, Comput. Math. Math. Phys., 38:2 (1998), 238–251  mathnet  mathscinet  zmath
    6. B. V. Pal'tsev, “On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions”, Math. Notes, 65:5 (1999), 571–581  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. B. V. Pal'tsev, I. I. Chechel', “Bilinear finite element implementations of iterative methods with incomplete splitting of boundary conditions for a Stokes-type system on a rectangle”, Comput. Math. Math. Phys., 39:11 (1999), 1755–1780  mathnet  mathscinet  zmath  elib
    8. N. A. Meller, B. V. Pal'tsev, E. G. Khlyupina, “On some finite element implementations of iterative methods with splitting of boundary conditions for Stokes and Stokes-type systems in a spherical layer: Axially symmetric case”, Comput. Math. Math. Phys., 39:1 (1999), 92–117  mathnet  mathscinet  zmath  elib
    9. A. S. Lozinskii, “On the acceleration of finite-element implementations of iterative processes with splitting of boundary conditions for a Stokes-type system”, Comput. Math. Math. Phys., 40:9 (2000), 1284–1307  mathnet  mathscinet  zmath  elib
    10. V. O. Belash, B. V. Pal'tsev, “On the spectral and approximating properties of cubic finite-element approximations of the Laplace and first-derivative operators: The periodic case”, Comput. Math. Math. Phys., 40:5 (2000), 718–738  mathnet  mathscinet  zmath  elib
    11. B. V. Pal'tsev, I. I. Chechel', “Exact estimates of the convergence rate of iterative methods with splitting of the boundary conditions for the Stokes-type system in a layer with a periodicity condition”, Comput. Math. Math. Phys., 40:12 (2000), 1751–1764  mathnet  mathscinet  zmath  elib
    12. Kobelkov G. Olshanskii M., “Effective Preconditioning of Uzawa Type Schemes for a Generalized Stokes Problem”, Numer. Math., 86:3 (2000), 443–470  crossref  isi
    13. Chizhonkov E. Lebedev V., “On Acceleration of the Convergence of One Iterative Method”, Russ. J. Numer. Anal. Math. Model, 15:5 (2000), 383–395  crossref  mathscinet  zmath  isi
    14. A. S. Lozinskii, “Finite-element realization of iterative processes with splitting of boundary conditions for a Stokes-type system in nonconcentric annuli”, Comput. Math. Math. Phys., 41:8 (2001), 1145–1157  mathnet  mathscinet
    15. V. O. Belash, B. V. Pal'tsev, “Bicubic finite-element implementations of methods with splitting of boundary conditions for a Stokes-type system in a strip under the periodicity condition”, Comput. Math. Math. Phys., 42:2 (2002), 188–210  mathnet  mathscinet  zmath  elib
    16. Belash V. Pal'tsev B. Chechel I., “On Convergence Rate of Some Iterative Methods for Bilinear and Bicubic Finite Element Schemes for the Dissipative Helmholtz Equation with Large Values of a Singular Parameter”, Russ. J. Numer. Anal. Math. Model, 17:6 (2002), 485–520  mathscinet  zmath  isi
    17. B. V. Pal'tsev, I. I. Chechel', “Increasing the rate of convergence of bilinear finite-element realizations of iterative methods by splitting boundary conditions for Stokes-type systems for large values of a singular parameter”, Comput. Math. Math. Phys., 44:11 (2004), 1949–1967  mathnet  mathscinet  zmath
    18. Pal'tsev B. Chechel I., “Finite-Element Linear Second-Order Accurate (Up to the Poles) Approximations of Laplace–Beltrami, Gradient, and Divergence Operators on a Sphere in R-3 in the Axisymmetric Case”, Dokl. Math., 69:2 (2004), 200–207  isi
    19. B. V. Pal'tsev, I. I. Chechel', “Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer”, Comput. Math. Math. Phys., 45:5 (2005), 816–857  mathnet  mathscinet  zmath  elib
    20. B. V. Pal'tsev, I. I. Chechel', “On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers”, Comput. Math. Math. Phys., 46:5 (2006), 820–847  mathnet  crossref  mathscinet  elib  elib
    21. Chizhonkov E. Kargin A., “On Solution of the Stokes Problem by the Iteration of Boundary Conditions”, Russ. J. Numer. Anal. Math. Model, 21:1 (2006), 21–38  crossref  mathscinet  zmath  isi  elib
    22. Pal'tsev B.V. Stavtsev A.V. Chechel I.I., “Improved Bicubic Finite-Element Approximation of the Neumann Problem for Poisson's Equation”, Dokl. Math., 77:2 (2008), 258–264  crossref  mathscinet  isi
    23. M. K. Kerimov, “Boris Vasil'evich Pal'tsev (on the occasion of his seventieth birthday)”, Comput. Math. Math. Phys., 50:7 (2010), 1113–1119  mathnet  crossref  mathscinet  adsnasa  isi  elib
    24. M. B. Soloviev, “On numerical implementations of a new iterative method with boundary condition splitting for solving the nonstationary stokes problem in a strip with periodicity condition”, Comput. Math. Math. Phys., 50:10 (2010), 1682–1701  mathnet  crossref  adsnasa  isi  elib
    25. Solov'ev M.B., “On Numerical Implementations of a New Iterative Method with Boundary Condition Splitting for the Nonstationary Stokes Problem”, Dokl. Math., 81:3 (2010), 471–475  crossref  mathscinet  isi
    26. B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel', “On the development of iterative methods with boundary condition splitting for solving boundary and initial-boundary value problems for the linearized and nonlinear Navier–Stokes equations”, Comput. Math. Math. Phys., 51:1 (2011), 68–87  mathnet  crossref  mathscinet  isi  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:162
    Full text:58
    References:21
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020