Matematicheskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2020, Volume 211, Number 6, Pages 107–131 (Mi msb9302)  

This article is cited in 3 scientific papers (total in 3 papers)

Functions with universal Fourier-Walsh series

M. G. Grigoryan

Faculty of Physics, Yerevan State University, Yerevan, Republic of Armenia

Abstract: We prove results on the existence of functions whose Fourier series in the Walsh system are universal in some sense or other in the function classes $L^p[0,1]$, $0<p<1$, and $M[0,1]$. We also give a description of the structure of these functions.
Bibliography: 30 titles.

Keywords: universal functions, Fourier-Walsh series, convergence, almost everywhere convergence.

Funding Agency Grant Number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 18T-1A148
This research was carried out with the financial support of the State Committee on Science of the Ministry of Education and Science of the Republic of Armenia (project no. 18T-1A148).


DOI: https://doi.org/10.4213/sm9302

Full text: PDF file (611 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2020, 211:6, 850–874

Bibliographic databases:

UDC: 517.538
PACS: УДК 517.538
MSC: 42C10, 43A15
Received: 07.07.2019 and 08.12.2019

Citation: M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Mat. Sb., 211:6 (2020), 107–131; Sb. Math., 211:6 (2020), 850–874

Citation in format AMSBIB
\Bibitem{Gri20}
\by M.~G.~Grigoryan
\paper Functions with universal Fourier-Walsh series
\jour Mat. Sb.
\yr 2020
\vol 211
\issue 6
\pages 107--131
\mathnet{http://mi.mathnet.ru/msb9302}
\crossref{https://doi.org/10.4213/sm9302}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4104777}
\elib{https://elibrary.ru/item.asp?id=45172678}
\transl
\jour Sb. Math.
\yr 2020
\vol 211
\issue 6
\pages 850--874
\crossref{https://doi.org/10.1070/SM9302}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000564137700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094980669}


Linking options:
  • http://mi.mathnet.ru/eng/msb9302
  • https://doi.org/10.4213/sm9302
  • http://mi.mathnet.ru/eng/msb/v211/i6/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. G. Grigoryan, “Universal Fourier Series”, Math. Notes, 108:2 (2020), 282–285  mathnet  crossref  crossref  mathscinet  isi  elib
    2. M. G. Grigoryan, “Functions universal with respect to the walsh system”, J. Contemp. Math. Anal.-Armen. Aca., 55:6 (2020), 376–388  crossref  zmath  isi
    3. M. G. Grigoryan, “O bezuslovnoi i absolyutnoi skhodimosti ryadov Khaara v metrike $L^{p}[0,1],0<p<1$”, Sib. matem. zhurn., 62:4 (2021), 747–757  mathnet  crossref
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:186
    References:21
    First page:18

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021