Matematicheskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2020, Volume 211, Number 9, Pages 105–118 (Mi msb9335)  

This article is cited in 1 scientific paper (total in 1 paper)

Bounded automorphism groups of compact complex surfaces

Yu. G. Prokhorov, C. A. Shramov*

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kähler manifold of nonnegative Kodaira dimension, always has bounded finite subgroups.
Bibliography: 23 titles.

Keywords: elliptic surface, automorphism group.

Funding Agency Grant Number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1614
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1614).

* Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/sm9335

Full text: PDF file (509 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2020, 211:9, 1310–1322

Bibliographic databases:

UDC: 512.76
MSC: 14J50
Received: 02.10.2019 and 02.03.2020

Citation: Yu. G. Prokhorov, C. A. Shramov, “Bounded automorphism groups of compact complex surfaces”, Mat. Sb., 211:9 (2020), 105–118; Sb. Math., 211:9 (2020), 1310–1322

Citation in format AMSBIB
\Bibitem{ProShr20}
\by Yu.~G.~Prokhorov, C.~A.~Shramov
\paper Bounded automorphism groups of compact complex surfaces
\jour Mat. Sb.
\yr 2020
\vol 211
\issue 9
\pages 105--118
\mathnet{http://mi.mathnet.ru/msb9335}
\crossref{https://doi.org/10.4213/sm9335}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4153732}
\elib{https://elibrary.ru/item.asp?id=45099692}
\transl
\jour Sb. Math.
\yr 2020
\vol 211
\issue 9
\pages 1310--1322
\crossref{https://doi.org/10.1070/SM9335}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000593506700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097195510}


Linking options:
  • http://mi.mathnet.ru/eng/msb9335
  • https://doi.org/10.4213/sm9335
  • http://mi.mathnet.ru/eng/msb/v211/i9/p105

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. G. Prokhorov, K. A. Shramov, “Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds”, Izv. Math., 84:5 (2020), 978–1001  mathnet  crossref  crossref  mathscinet  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:155
    References:12
    First page:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021