RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1994, Volume 185, Number 10, Pages 91–144 (Mi msb934)  

This article is cited in 6 scientific papers (total in 6 papers)

The spectral shift function, the characteristic function of a contraction, and a generalized integral

A. V. Rybkin


Abstract: Let $T$ be a contraction that is a trace class perturbation of a unitary operator $V$, and let $\{\lambda_k\}$ be the discrete spectrum of $T$. For a sufficiently large class of functions $\Phi$ the trace formula
$$ \operatorname{tr}\{\Phi(T)-\Phi (V)\}=\sum_k\{\Phi(\lambda_k)-\Phi(\lambda_k/|\lambda_k|)\}+(B)\int_0^{2\pi}\Phi'(e^{i\varphi}) d\Omega(\varphi), $$
holds. This formula is a direct analogue of the well-known M. G. Krein trace formula for unitary operators. It is natural to call the function $\Omega$ the spectral shift distribution. Generally speaking, it is not of bounded variation; however, the integral in the trace formula exists in the wider $B$-sense. In the present paper an explicit representation is obtained for $\Omega$ in terms of the characteristic function $\Theta(\lambda)$ of the contraction $T$, and also a relation between a certain derivative $\Omega'$ and the scattering matrix $S(\varphi)$ of the pair $(T,V)$:
$$ \det S(\varphi)=\exp\{-2\pi i\overline{\Omega'(\varphi)} \} \quad \textrm{a.e. with respect to Lebesgue measure} $$
is established. A necessary and sufficient condition that $\Omega$ have bounded variation is obtained. In particular, the necessary and sufficient condition requires that the singular spectrum of the contraction $T$ be empty. The main results are complete.

Full text: PDF file (4639 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 83:1, 237–281

Bibliographic databases:

UDC: 517
MSC: Primary 47A45, 47A60; Secondary 47A40
Received: 03.09.1993

Citation: A. V. Rybkin, “The spectral shift function, the characteristic function of a contraction, and a generalized integral”, Mat. Sb., 185:10 (1994), 91–144; Russian Acad. Sci. Sb. Math., 83:1 (1995), 237–281

Citation in format AMSBIB
\Bibitem{Ryb94}
\by A.~V.~Rybkin
\paper The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral
\jour Mat. Sb.
\yr 1994
\vol 185
\issue 10
\pages 91--144
\mathnet{http://mi.mathnet.ru/msb934}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1309184}
\zmath{https://zbmath.org/?q=an:0852.47004}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 1
\pages 237--281
\crossref{https://doi.org/10.1070/SM1995v083n01ABEH003589}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995TQ10000012}


Linking options:
  • http://mi.mathnet.ru/eng/msb934
  • http://mi.mathnet.ru/eng/msb/v185/i10/p91

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexei Rybkin, “On a trace formula of the Buslaev–Faddeev type for a long-range potential”, J Math Phys (N Y ), 40:3 (1999), 1334  crossref  mathscinet  zmath  isi
    2. S. A. M. Marcantognini, M. D. Morán, “Koplienko–Neidhardt trace formula for pairs of contraction operators and pairs of maximal dissipative operators”, Math Nachr, 279:7 (2006), 784  crossref  mathscinet  zmath  isi
    3. V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. F. Gesztesy, A. Pushnitski, B. Simon, “On the Koplienko spectral shift function. I. Basics”, Zhurn. matem. fiz., anal., geom., 4:1 (2008), 63–107  mathnet  mathscinet  zmath  elib
    5. Potapov D. Sukochev F., “Koplienko Spectral Shift Function on the Unit Circle”, Commun. Math. Phys., 309:3 (2012), 693–702  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funct. Anal. Appl., 51:3 (2017), 185–203  mathnet  crossref  crossref  isi  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:388
    Full text:114
    References:50
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020