RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1994, Volume 185, Number 12, Pages 79–100 (Mi msb948)  

This article is cited in 11 scientific papers (total in 11 papers)

Relative Wall groups and decorations

Yu. V. Muranov


Abstract: A two-row diagram of relative Wall groups with decorations is constructed in the paper, which allows a unified approach to the study of Wall groups and Tate cohomology. Using this diagram a number of new results are obtained for Wall groups and Browder–Livesay groups, and their natural mappings in the case of finite 2-groups.

Full text: PDF file (2280 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 83:2, 495–514

Bibliographic databases:

UDC: 515.16
MSC: 57R67
Received: 17.06.1993

Citation: Yu. V. Muranov, “Relative Wall groups and decorations”, Mat. Sb., 185:12 (1994), 79–100; Russian Acad. Sci. Sb. Math., 83:2 (1995), 495–514

Citation in format AMSBIB
\Bibitem{Mur94}
\by Yu.~V.~Muranov
\paper Relative Wall groups and decorations
\jour Mat. Sb.
\yr 1994
\vol 185
\issue 12
\pages 79--100
\mathnet{http://mi.mathnet.ru/msb948}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1317300}
\zmath{https://zbmath.org/?q=an:0861.57043}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 2
\pages 495--514
\crossref{https://doi.org/10.1070/SM1995v083n02ABEH003603}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995TQ10300013}


Linking options:
  • http://mi.mathnet.ru/eng/msb948
  • http://mi.mathnet.ru/eng/msb/v185/i12/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. V. Muranov, “Splitting obstruction groups and quadratic extensions of anti-structures”, Izv. Math., 59:6 (1995), 1207–1232  mathnet  crossref  mathscinet  zmath  isi
    2. Yu. V. Muranov, “$K$-groups of quadratic extensions of rings”, Math. Notes, 58:2 (1995), 861–866  mathnet  crossref  mathscinet  zmath  isi
    3. Yu. V. Muranov, D. Repovš, “Groups of obstructions to surgery and splitting for a manifold pair”, Sb. Math., 188:3 (1997), 449–463  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Yu. V. Muranov, D. Repovš, “Surgery of closed manifolds with dihedral fundamental group”, Math. Notes, 64:2 (1998), 202–212  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Yu. V. Muranov, I. Hambleton, “Projective splitting obstruction groups for one-sided submanifolds”, Sb. Math., 190:10 (1999), 1465–1485  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Yu. V. Muranov, D. Repovš, “The Groups $LS$ and Morphisms of Quadratic Extensions”, Math. Notes, 70:3 (2001), 378–383  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Cavicchioli A., Muranov Y., Repovs D., “Algebraic Properties of Decorated Splitting Obstruction Groups”, Boll. Unione Mat. Italiana, 4B:3 (2001), 647–675  isi
    8. Ruini B., Spaggiari F., “On the Computation of l-Groups and Natural Maps”, Abh. Math. Semin. Univ. Hamburg, 72 (2002), 297–308  crossref  isi
    9. Cavicchioli A., Muranov Y., Spaggiari F., “Relative Groups in Surgery Theory”, Bull. Belg. Math. Soc.-Simon Steven, 12:1 (2005), 109–135  isi
    10. Cencelj M., Muranov Yu.V., Repovs D., “On the Splitting Problem for Manifold Pairs with Boundaries”, Abh. Math. Semin. Univ. Hamburg, 76 (2006), 35–55  crossref  isi
    11. Hegenbarth F., Muranov Yu.V., Repovs D., “Browder-Livesay Filtrations and the Example of Cappell and Shaneson”, Milan J. Math., 81:1 (2013), 79–97  crossref  mathscinet  zmath  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:155
    Full text:51
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019