RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1996, Volume 187, Number 1, Pages 17–40 (Mi msb98)  

This article is cited in 3 scientific papers (total in 3 papers)

A priori estimates and smoothness of solutions of a system of quasi-linear equations that is elliptic in the Douglis–Nirenberg sense

G. V. Grishina

N. E. Bauman Moscow State Technical University

Abstract: We study a Douglis–Nirenberg elliptic system of quasi-linear equations. We solve the problem of the limiting admissible rate of growth of the non-linear terms of the system with respect to their arguments consistent with the possibility of obtaining estimates of the derivatives of a solution in terms of its maximum absolute value. The restrictions on the smoothness of the non-linear terms are minimal and the results are sharp. We construct an example that shows the optimality of the upper bound for the exponent of growth. A priori $L_p$-estimates are obtained both inside the domain for solutions belonging to certain Sobolev spaces. We obtain estimates of the Hölder norms of the derivatives of a solutions. We prove a theorem on a removable isolated singularity of bounded solutions of general elliptic systems of quasi-linear equation. All results are new, even for a single second-order equation.

DOI: https://doi.org/10.4213/sm98

Full text: PDF file (351 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1996, 187:1, 15–38

Bibliographic databases:

UDC: 517.956.2
MSC: Primary 35J30; Secondary 35B05
Received: 16.02.1995

Citation: G. V. Grishina, “A priori estimates and smoothness of solutions of a system of quasi-linear equations that is elliptic in the Douglis–Nirenberg sense”, Mat. Sb., 187:1 (1996), 17–40; Sb. Math., 187:1 (1996), 15–38

Citation in format AMSBIB
\Bibitem{Gri96}
\by G.~V.~Grishina
\paper A priori estimates and smoothness of solutions of a~system of quasi-linear equations that is elliptic in the~Douglis--Nirenberg sense
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 1
\pages 17--40
\mathnet{http://mi.mathnet.ru/msb98}
\crossref{https://doi.org/10.4213/sm98}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1380202}
\zmath{https://zbmath.org/?q=an:0866.35026}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 1
\pages 15--38
\crossref{https://doi.org/10.1070/SM1996v187n01ABEH000098}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996UW03900002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030306744}


Linking options:
  • http://mi.mathnet.ru/eng/msb98
  • https://doi.org/10.4213/sm98
  • http://mi.mathnet.ru/eng/msb/v187/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M.I. Vishik, V.V. Chepyzhov, “Averaging of trajectory attractors of evolution equations with rapidly oscillating terms”, Sb. Math, 192:1 (2001), 11  mathnet  crossref  mathscinet  zmath  scopus  scopus  scopus
    2. David Cheban, Jinqiao Duan, “Recurrent motions and global attractors of non-autonomous Lorenz systems”, Dynamical Systems, 19:1 (2004), 41  crossref  mathscinet  isi  scopus  scopus  scopus
    3. M. I. Vishik, V. V. Chepyzhov, “Attractors of dissipative hyperbolic equations with singularly oscillating external forces”, Math Notes, 79:3-4 (2006), 483  mathnet  crossref  mathscinet  zmath  scopus  scopus  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:340
    Full text:65
    References:52
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018