RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2003, Volume 44, Number 6, Pages 1350–1364 (Mi smj1261)  

This article is cited in 8 scientific papers (total in 8 papers)

The method of fictitious domains in the Signorini problem

V. D. Stepanova, A. M. Khludnevb

a Computer Centre Far-Eastern Branch of RAS
b M. A. Lavrent'ev Institute of Hydrodynamics

Abstract: We justify the method of fictitious domains for an elliptic equation with nonlinear Signorini boundary conditions. The method makes it possible to construct a family of auxiliary problems defined in a wider domain and possessing the property that their solutions converge in an appropriate sense to a solution of the original problem.

Keywords: Signorini boundary conditions, fictitious domain, elliptic boundary value problem

Full text: PDF file (235 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2003, 44:6, 1061–1074

Bibliographic databases:

UDC: 517.95
Received: 24.04.2003

Citation: V. D. Stepanov, A. M. Khludnev, “The method of fictitious domains in the Signorini problem”, Sibirsk. Mat. Zh., 44:6 (2003), 1350–1364; Siberian Math. J., 44:6 (2003), 1061–1074

Citation in format AMSBIB
\Bibitem{SteKhl03}
\by V.~D.~Stepanov, A.~M.~Khludnev
\paper The method of fictitious domains in the Signorini problem
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 6
\pages 1350--1364
\mathnet{http://mi.mathnet.ru/smj1261}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2034941}
\zmath{https://zbmath.org/?q=an:1071.35057}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 6
\pages 1061--1074
\crossref{https://doi.org/10.1023/B:SIMJ.0000007482.05450.16}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000187464000014}


Linking options:
  • http://mi.mathnet.ru/eng/smj1261
  • http://mi.mathnet.ru/eng/smj/v44/i6/p1350

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Khludnev AM, “Invariant integrals in problems of a crack at the locus of inhomogeneity and in contact problems”, Doklady Physics, 49:10 (2004), 603–607  crossref  mathscinet  adsnasa  isi  scopus
    2. Fremiot G., Horn W., Laurain A., Rao M., Sokolowski J., “On the analysis of boundary value problems in nonsmooth domains”, Dissertationes Mathematicae, 2009, no. 462, 7  mathscinet  isi
    3. Alekseev G.V., Khludnev A.M., “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestn. Novosibirskogo gos. un-ta. Ser.: Matem., mekh., inform., 9:2 (2009), 15–29  zmath
    4. G. V. Alekseev, A. M. Khludnev, “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestn. NGU. Ser. matem., mekh., inform., 9:2 (2009), 15–29  mathnet
    5. N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539  mathnet  crossref
    6. N. A. Nikolaeva, “Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava”, J. Math. Sci., 221:6 (2017), 872–882  mathnet  crossref  crossref
    7. Lazarev N.P., Itou H., Neustroeva N.V., “Fictitious Domain Method For An Equilibrium Problem of the Timoshenko-Type Plate With a Crack Crossing the External Boundary At Zero Angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80  crossref  mathscinet  zmath  isi  scopus
    8. Lazarev N., Popova T., Semenova G., “Existence of An Optimal Size of a Rigid Inclusion For An Equilibrium Problem of a Timoshenko Plate With Signorini-Type Boundary Condition”, J. Inequal. Appl., 2016, 18  crossref  mathscinet  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:468
    Full text:149
    References:45

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020