|
This article is cited in 2 scientific papers (total in 2 papers)
On the group of reduced identities of relatively free solvable groups
E. I. Timoshenko Novosibirsk State University of Architecture and Civil Engineering
Abstract:
We prove that the groups of reduced identities of a free solvable group and a free metabelian group of a given nilpotency class are trivial whenever these groups are finitely generated.
Keywords:
algebraic geometry over a group, group of reduced identities
Full text:
PDF file (176 kB)
English version:
Siberian Mathematical Journal, 2002, 43:5, 920–925
Bibliographic databases:
UDC:
512.572 Received: 26.02.2002
Citation:
E. I. Timoshenko, “On the group of reduced identities of relatively free solvable groups”, Sibirsk. Mat. Zh., 43:5 (2002), 1142–1148; Siberian Math. J., 43:5 (2002), 920–925
Citation in format AMSBIB
\Bibitem{Tim02}
\by E.~I.~Timoshenko
\paper On the group of reduced identities of relatively free solvable groups
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 5
\pages 1142--1148
\mathnet{http://mi.mathnet.ru/smj1356}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1946270}
\zmath{https://zbmath.org/?q=an:1020.20019}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 5
\pages 920--925
\crossref{https://doi.org/10.1023/A:1020115109444}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178696400014}
Linking options:
http://mi.mathnet.ru/eng/smj1356 http://mi.mathnet.ru/eng/smj/v43/i5/p1142
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Ekici N., Oguslu N.S., “Test rank of an abelian product of a free Lie algebra and a free abelian Lie algebra”, Proc Indian Acad Sci Math Sci, 121:3 (2011), 291–300
-
Oguslu N.S., “Test Rank of the Lie Algebra F/[R `, F]”, J. Algebra. Appl., 13:4 (2014), 1350122
|
Number of views: |
This page: | 90 | Full text: | 41 |
|