|
This article is cited in 3 scientific papers (total in 3 papers)
On maximal chains in the lattice of module topologies
V. I. Arnautov, K. M. Filippov Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Abstract:
Let $(R,\tau_R)$ be a topological ring and $ _RM$, a left unitary $R$-module. The set $L(M)$ of all $(R,\tau_R)$-module topologies on $ _RM$ is a complete modular lattice. A topology $\tau\in L(M)$ is $n$-premaximal if in $L(M)$ there exists an inclusion-maximal chain $\tau_>\tau_1>…>\tau_n$ such that $\tau_0$ is the largest element in $L(M)$ and $\tau_n=\tau$. Section 1 contains conditions for existence of 1-premaximal Hausdorff topologies on $ _RM$. Section 2 contains a description of all $n$-premaximal topologies in the case when $(R,\tau_R)$ is a topological skew field whose topology is determined by a real absolute value.
Full text:
PDF file (276 kB)
English version:
Siberian Mathematical Journal, 2001, 42:3, 415–427
Bibliographic databases:
UDC:
512.556.5 Received: 13.05.1998
Citation:
V. I. Arnautov, K. M. Filippov, “On maximal chains in the lattice of module topologies”, Sibirsk. Mat. Zh., 42:3 (2001), 491–506; Siberian Math. J., 42:3 (2001), 415–427
Citation in format AMSBIB
\Bibitem{ArnFil01}
\by V.~I.~Arnautov, K.~M.~Filippov
\paper On maximal chains in the lattice of module topologies
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 3
\pages 491--506
\mathnet{http://mi.mathnet.ru/smj1438}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1852230}
\zmath{https://zbmath.org/?q=an:1020.16033}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 3
\pages 415--427
\crossref{https://doi.org/10.1023/A:1010469606306}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000169277100001}
Linking options:
http://mi.mathnet.ru/eng/smj1438 http://mi.mathnet.ru/eng/smj/v42/i3/p491
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. I. Arnautov, K. M. Filippov, “On Prebox Module Topologies”, Math. Notes, 74:1 (2003), 12–17
-
Arnautov V., Filippov K., “On group topologies on an abelian group preceding one another”, Computational Commutative and Non-Commutative Algebraic Geometry, NATO Science Series, Sub-Series III: Computer and Systems Sciences, 196, 2005, 251–267
-
V. I. Arnautov, “On coverings in the lattice of all group topologies of arbitrary Abelian groups”, Siberian Math. J., 47:5 (2006), 787–796
|
Number of views: |
This page: | 214 | Full text: | 74 |
|