RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2007, Volume 48, Number 1, Pages 205–213 (Mi smj17)  

This article is cited in 7 scientific papers (total in 7 papers)

Powerful digraphs

S. V. Sudoplatov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We introduce the concept of a powerful digraph and establish that a powerful digraph structure is included into the saturated structure of each nonprincipal powerful type $p$ possessing the global pairwise intersection property and the similarity property for the theories of graph structures of type $p$ and some of its first-order definable restrictions (all powerful types in the available theories with finitely many (>1) pairwise nonisomorphic countable models have this property). We describe the structures of the transitive closures of the saturated powerful digraphs that occur in the models of theories with nonprincipal powerful 1-types provided that the number of nonprincipal 1-types is finite. We prove that a powerful digraph structure, considered in a model of a simple theory, induces an infinite weight, which implies that the powerful digraphs do not occur in the structures of the available classes of the simple theories (like the supersimple or finitely based theories) that do not contain theories with finitely many (>1) countable models.

Keywords: powerful type, powerful digraph, infinite weight.

Full text: PDF file (212 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2007, 48:1, 165–171

Bibliographic databases:

UDC: 510.67
Received: 06.06.2003

Citation: S. V. Sudoplatov, “Powerful digraphs”, Sibirsk. Mat. Zh., 48:1 (2007), 205–213; Siberian Math. J., 48:1 (2007), 165–171

Citation in format AMSBIB
\Bibitem{Sud07}
\by S.~V.~Sudoplatov
\paper Powerful digraphs
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 1
\pages 205--213
\mathnet{http://mi.mathnet.ru/smj17}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2304889}
\zmath{https://zbmath.org/?q=an:1164.03316}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 1
\pages 165--171
\crossref{https://doi.org/10.1007/s11202-007-0017-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000244424100017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846599243}


Linking options:
  • http://mi.mathnet.ru/eng/smj17
  • http://mi.mathnet.ru/eng/smj/v48/i1/p205

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Sudoplatov, “Small Stable Generic Graphs with Infinite Weight. Bipartite Digraphs”, Siberian Adv. Math., 17:1 (2007), 37–48  mathnet  crossref  mathscinet
    2. S. V. Sudoplatov, “Complete Theories with Finitely Many Countable Models. II”, Algebra and Logic, 45:3 (2006), 180–200  mathnet  crossref  mathscinet  zmath
    3. S. V. Sudoplatov, “Small Stable Generic Graphs with Infinite Weight. Digraphs without Furcations”, Siberian Adv. Math., 18:2 (2008), 142–150  mathnet  crossref  mathscinet
    4. S. V. Sudoplatov, “On expansions and extensions of powerful digraphs”, Siberian Math. J., 50:3 (2009), 498–502  mathnet  crossref  mathscinet  isi
    5. S. V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci., 169:5 (2010), 680–695  mathnet  crossref  mathscinet
    6. I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 380–407  mathnet
    7. S. V. Sudoplatov, “Combinations of structures”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 24 (2018), 82–101  mathnet  crossref
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:243
    Full text:65
    References:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020