RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2008, Volume 49, Number 4, Pages 796–812 (Mi smj1878)  

This article is cited in 2 scientific papers (total in 2 papers)

Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings

A. A. Egorov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We obtain stability theorems for classes of solutions to the differential equations constructed by means of quasiconvex functions and null Lagrangians.

Keywords: quasiconvex function, null Lagrangian, stability of classes of mappings.

Full text: PDF file (393 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2008, 49:4, 637–649

Bibliographic databases:

UDC: 517.957+517.548
Received: 08.12.2006

Citation: A. A. Egorov, “Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings”, Sibirsk. Mat. Zh., 49:4 (2008), 796–812; Siberian Math. J., 49:4 (2008), 637–649

Citation in format AMSBIB
\Bibitem{Ego08}
\by A.~A.~Egorov
\paper Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 4
\pages 796--812
\mathnet{http://mi.mathnet.ru/smj1878}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2456691}
\zmath{https://zbmath.org/?q=an:1164.35303}
\elib{http://elibrary.ru/item.asp?id=10429007}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 4
\pages 637--649
\crossref{https://doi.org/10.1007/s11202-008-0060-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000258913200006}
\elib{http://elibrary.ru/item.asp?id=13575916}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549085633}


Linking options:
  • http://mi.mathnet.ru/eng/smj1878
  • http://mi.mathnet.ru/eng/smj/v49/i4/p796

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Egorov, “Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. I”, Vladikavk. matem. zhurn., 16:3 (2014), 22–37  mathnet
    2. Sychev M.A. Sycheva N.N., “Young Measure Approach To the Weak Convergence Theory in the Calculus of Variations and Strong Materials”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 15:SI (2016), 561–598  mathscinet  zmath  isi
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:432
    Full text:132
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020